
MIMOSA user's manual
(Draft version 1.2.3beta)

Jean-Pierre Müller1

CIRAD-ES-GREEN
jean-pierre.muller@cirad.fr

August 25, 2008

1Associated researcher to LIRMM

Contents

1 Introduction 5

2 Running Mimosa 7
2.1 Downloading Mimosa . 7
2.2 Launching Mimosa . 7
2.3 The menus . 8
2.4 The editor windows . 10
2.5 The scheduler window . 11

3 The ontologies 13
3.1 Individuals . 13
3.2 Links . 14
3.3 Attributes . 14
3.4 Categories . 15
3.5 Relations . 16

4 The conceptual model editor 18
4.1 The editor . 18
4.2 Category edition . 19

4.2.1 Drawing a category . 19
4.2.2 Editing a category . 20
4.2.3 Deleting a category . 20

4.3 Relation edition . 21
4.3.1 Drawing a relation . 21
4.3.2 Editing a relation . 22
4.3.3 Deleting a relation . 22

5 The dynamics 24
5.1 Introduction . 24
5.2 The operational semantics . 25

5.2.1 The model . 25
5.2.2 The ports . 27
5.2.3 The in�uences . 28
5.2.4 The probes . 28
5.2.5 The time . 29

5.3 The behavior speci�cation . 29
5.3.1 Programmatic speci�cation 30
5.3.2 Scripted speci�cation . 35

1

CONTENTS 2

5.3.3 State charts . 37
5.3.4 Further extensions . 37

6 The concrete model editor 40
6.1 Individual edition . 41

6.1.1 Drawing an individual . 41
6.1.2 Editing an individual . 42
6.1.3 Deleting an individual . 42

6.2 Link edition . 43
6.2.1 Drawing a link . 43
6.2.2 Deleting a link . 43

6.3 Output speci�cation . 44
6.3.1 Drawing an output . 44
6.3.2 Editing an output . 44
6.3.3 Deleting an output . 46
6.3.4 Drawing an output edge 47
6.3.5 Deleting an output edge 47

6.4 Control panel de�nition . 47
6.4.1 Drawing an output view 49
6.4.2 Deleting an output view 49
6.4.3 Drawing a parameter editor 49
6.4.4 Deleting a parameter editor 50

7 Some examples 51
7.1 The rolling ball example . 51

7.1.1 De�ning the conceptual model 51
7.2 De�ning the dynamics . 52

7.2.1 De�ning the concrete model 55
7.3 The stupid model . 57

8 The scheduler 58

A Introduction to Scheme 62
A.1 Control syntax . 63
A.2 Booleans . 63
A.3 Numbers . 64
A.4 Dotted pairs and lists . 64
A.5 Mimosa primitives . 65

List of Figures

2.1 The welcome window . 8
2.2 The conceptual model editor as an example of an editor window 10
2.3 The category list editor of ontologies 11
2.4 The graphical editor buttons . 11
2.5 The scheduler window . 12

3.1 Farmer and plot individuals. 14
3.2 Farmers owning plots. 14
3.3 The description of the plot p2. 15
3.4 A category hierarchy of plots and people 15
3.5 A category hierarchy of plots and people with a relationship . . . 16

4.1 The buttons of the ontology editor. 18
4.2 An annotated category. 19
4.3 The creation dialog for a category. 19
4.4 The category graphical form. 20
4.5 The category editor with the attribute panel. 21
4.6 The category editor with the inherited attributes. 21
4.7 The creation dialog for a relation. 21
4.8 The example of a relation. 22
4.9 The relations of a category. 22

5.1 The behavior panel of the category. 25
5.2 The behavior panel of a simple object. 38

6.1 The buttons of the model editor. 41
6.2 The creation dialog for an individual. 42
6.3 The individual graphical form. 42
6.4 The individual editor with the attribute panel. 43
6.5 The creation dialog for a link. 43
6.6 The example of links. 44
6.7 A concrete model with an output speci�cation. 45
6.8 The creation dialog for an output. 45
6.9 The output graphical form. 45
6.10 The output editor with an attribute panel. 46
6.11 The creation dialog for an output edge. 47
6.12 The control panel toolbar. 47
6.13 The control panel view. 48

3

LIST OF FIGURES 4

6.14 The creation dialog for an output view. 49
6.15 The creation dialog for a parameter editor. 50

7.1 The conceptual model for a kicked and observed rolling ball. . . . 52
7.2 The conceptual model for a rolling ball with the attribut e panel. 52
7.3 The rolling ball category with the relations panel. 53
7.4 De�nition of an arc from an existing relation de�nition 53
7.5 The rolling ball category with the probes panel 54
7.6 The rolling ball category with the initialize panel 55
7.7 The rolling ball category with the external transition p anel . . . 56
7.8 The concrete model as an instance of the conceptual model. . . . 56
7.9 The edition dialog for an individual. 57
7.10 The view on the rolling ball state 57

8.1 The scheduler window. 58
8.2 The main inspector window. 59
8.3 The entity inspector window. 60
8.4 The graph of the simulated model. 61

Chapter 1

Introduction

Mimosa1 is an extensible modeling and simulation platform ([9]). It is aiming
at supporting the whole modeling and simulation process from the conceptual
model up to the running simulations.

The modeling process is assumed to be constituted iteratively of the following
stages:

The conceptual modeling stage: it consists in elaborating the ontology of
the domain as a set of categories, their attributes and theirrelationships,
either taxonomic or semantical.

The dynamical modeling stage: in order to describe the dynamics of the
categories de�ned in the �rst phase, one must decide on the choice of
paradigm (di�erential equations, straight scripting, age nt-based, etc.) for
each category. The paradigm is described using a built-in meta-ontology.
Given the choice of dynamical paradigm, one must specify thepossible
states and state changes according to the chosen paradigm.

the concrete modeling stage: the previously described stages de�ne the vo-
cabulary in which the concrete model(s) can be described as aset of indi-
viduals linked to each other and with given attribute values.

the simulation speci�cation stage: apart from the structure of the model
to simulate as described in the previous stage, an importantwork consists
in deciding which attributes can be considered as �xed parameters, which
ones can be manipulated by the user, how to output the states of the
model (plots, grids, databases, statistical tools, etc.)

the simulation stage: it consists in running the simulations themselves by
creating the simulation model to run as a set of entities linked through
ports by connections, by associating the means to specify the input pa-
rameters and to handle the outputs of the simulations and by actually
simulating it.

In the following, we shall describe these stages in turn. Butbefore, we shall
shortly introduce how to run the system.

1 It is the french acronym for �Méthodes Informatiques de MOdé lisation et Simulation
Agents�: computer science methods for agent-based modelin g and simulation

5

CHAPTER 1. INTRODUCTION 6

Mimosa is also implemented to be multi-lingual. For the time being only
english and french are provided; spanish is coming soon. Theuser's manual is
only in english. Most of the explanations still apply even if the menus and titles
are not the same.

Chapter 2

Running Mimosa

2.1 Downloading Mimosa

Mimosa is a free software under LGPL license and CIRAD copyright. The
source and code is available on SourceForge.

If you are only interested in the program itself, you can go to the Mimosa
site on SourceForge:http://sourceforge.net/projects/mimosa . You just
have to follow the link �dowload� to go to the page where you can download the
software. How to run it is explained in the next section.

If you are interested by the software itself (or even want to contribute), feel
free to access it via the CVS server at:

pserver:anonymous@mimosa.cvs.sourceforge.net/cvsroo t/mimosa .
The latest version is currently under the branch: version2006-04-19 . The

tagged versionsversion101beta and version110beta can be dowloaded but,
of course, are not fully up to date. If you want to be a developer, just create an
account on SourceForge and send a message to:

jean-pierre.muller@cirad.fr
to give the name of your account and to explain what you want todo.

2.2 Launching Mimosa

Mimosa is written in Java 1.5 and can be run on any platform (both hardware
and operating system) as long as at least Java JRE 1.5 is installed.

For the time being, Mimosa is provided as a folder containing:

� mimosa.jar which is the main program to be launched by typing: java
-jar mimosa.jar or by double-clicking on it if your OS has Java inte-
grated in it.

� a libs folder containing the libraries necessary for running Mimosa.

� an example folder containing some examples to load within Mimosa for
exploring its functionalities.

� a documentation folder for the documentation (it should be soon or later
a user's manual (this one), a programmer's manual and the full javadoc
hierarchy).

7

CHAPTER 2. RUNNING MIMOSA 8

Figure 2.1: The welcome window

� a plugins folder contains so-called plugins which are either hard-coded ex-
amples or additional dynamical speci�cation paradigms. Most of Mimosa
is assumed to be sooner or later distributed in this form.

When launching Mimosa, a �rst window is opened to choose yourlanguage
(see �gure 2.1). The window shall appear in your operating system language as
well as the choice by default. However, depending with whom you are working,
any other available language can be selected. Thereafter, awindow with an
editor for conceptual modeling appears (see 3). The next section describes the
menus in detail.

2.3 The menus

Four menus are provided:

File: this menu provides access to all the functionalities related to the window
which is active or to open new windows:

New: is used to open any of the following new windows:

Conceptual model editor: opens a window for editing concep-
tual models;

Mereology editor: opens a window for editing more sophisticated
conceptual models (in particular with whole/part relation ships,
what mereology is all about!). Currently, it is not yet fully op-
erational;

Concrete model editor: opens a window for editing concrete mod-
els (as instances of conceptual models);

Scheduler: opens a scheduler control window for running the sim-
ulation models.

Open...: loads the content of a �le depending of the selected window.
The �le must contain an appropriate XML representation. The kind
of content which can be loaded depends on the active window. If
it is a conceptual model editor, only a saved conceptual model can
be loaded. If it is a mereology window, only a saved mereological or
above model can be loaded. If it is a concrete model editor, only a
saved concrete model can be loaded. In the last case, be sure that
the conceptual models used by the concrete model have been loaded
beforehand. Finally, if it is a scheduler window, only the XML �les

CHAPTER 2. RUNNING MIMOSA 9

especially generated from the concrete model editor for this purpose
can be loaded1.

Save: saves the model currently edited in the active window in the asso-
ciated �le (the last �le it was saved to). If it was never saved before,
a �le chooser dialog opens.

Save as...: saves the model currently edited in the active window in a �le
to specify regardless of the last save (or open).

Save as image...: saves the displayed graph (if any) as a picture in a
number of proposed formats.

Print...: prints the content of the current window if applicable (it is ap-
plicable when a graph is displayed).

Restore...: this item is only used if you de�ned a new meta-ontology in
a so-called plugin and you want to dynamically reload the plugins
de�nitions for further use without relaunching Mimosa.

Edit: this menu provides the contextual editing functionalities provided for
the selected window or object. Any editor provides at least the following
functionalities in addition to the usual cut, copy and paste:

Add: to add a new object (categories, individuals, states, etc.);
Change: to change the name of an object when there is an associated

name;
Edit: to edit the structure of an object (the structure depends on the

object and, sometimes, includes the associated behavior description);
Delete: to remove the selected object(s);
Delete all: to remove all the de�ned objects.

Window: this menu provides quick access to the opened windows. One ofthese
is always accessible even if not shown by default:

Output: to display the output window which is a console containing: a
panel for user speci�c output, a panel where error are displayed and
a panel where the traces are displayed.

Help: this menu gives access to a number of tools for debugging:

Statistics: displays in the output window some statistics about the data
structures used by the scheduler: number of created entities and
usage of the in�uences;

Prede�nitions: displays in the output window the prede�nitions as de-
�ned in the scripting mechanism;

Show content: displays in the output window the content of the tables
created by the various editors which are the data structuresbehind
the scenes;

Script interpreter: displays a window in which the user can enter ex-
pressions in any of the provided scripting languages in order to test
the code. The results are displayed in the output window whenpush-
ing the eval button.

1This possibility is provided to create stand-alone models w ithout the associated conceptual
models.

CHAPTER 2. RUNNING MIMOSA 10

Figure 2.2: The conceptual model editor as an example of an editor window

2.4 The editor windows

Each editor window has the same structure (see the �gure 2.2). It is divided in
two vertical panels.

The left panel contains the list of existing models (either conceptual or con-
crete) referenced by their names. In Mimosa, these models are also referred to
as ontologies. One can select an existing model (in the modeleditor) or ontology
(in the ontology editor) by left-clicking on its name. By rig ht-clicking on the
panel, one accesses a popup menu where it is possible to add a new ontology,
change its name or delete it. It is highly recommended to create a new ontol-
ogy each time one is describing a di�erent structure for modularity and reuse
reasons.

The right panel is editor speci�c and usually allows multipl e views of the
same ontology or parts of it. In most cases a graphical view isprovided. In the
�gure 2.2, there are three editor panels. The shown one is thegraphical editor
panel. The other two are used to edit categories and in�uencetypes (see 5.2.3)
as lists. The �gure 2.3 shows the list editor where it is also possible to add,
change the name, edit and remove categories.

On the top of any drawing view, there is a toolbar with a number of model
speci�c buttons. These buttons are speci�c and shall be described in the related
chapters. These editing buttons are also available as a popup menu when right-
clicking in the drawing area. The last button is a drop down menu to manipulate
the editor window (zooming in and out, reducing, enlarging or hidding/showing
the grid for objects alignment). The �gure 2.4 shows the buttons for editing

CHAPTER 2. RUNNING MIMOSA 11

Figure 2.3: The category list editor of ontologies

Figure 2.4: The graphical editor buttons

mereological conceptual models.
Any created object can be edited by double-clicking on it. Onright-clicking

on an object, one can access a popup menu for editing (same as double-clicking)
or deleting the object.

2.5 The scheduler window

On the top of the scheduler window (see 2.5), the list of existing models is
provided for inclusion within the list of available models to the scheduler. It
is also possible to add additional models to simulate by loading them from
scheduler speci�c �les. This possibility is used when delivering turn key models.

The bottom of the scheduler window is divided in two vertical panels.
In the left panel, there is the list of existing models (as added from the model

editor or from �les). Exactly one model must be selected to berun.
The right panel is divided in three horizontal panels:

1. the top panel has two check boxes for debugging:

Trace: to turn tracing on and o�. If the trace is on, the in�uences pos ted
and sent are displayed in the trace window.

CHAPTER 2. RUNNING MIMOSA 12

Figure 2.5: The scheduler window

Verify: to turn verifying on and o�. If the verify is on, all the declar a-
tions (names, types and cardinality) are checked during simulation.
It slows down the simulation quite a bit but it is very useful f or
checking whether the behavior is consistent with the declarations.

as well as a button to visualize the simulated structure as a graph. Cur-
rently, the graph is not updated while running the simulatio n. Therefore,
the button has to be pushed each time, one wants to visualize the current
state (to be improved later on).

2. the middle panel displays the state of the simulation (unknown, initialized,
running or stopped) and the current date (in global time). An end date
can be entered to specify when to stop the simulation. The core simulation
system being event-based, this is NOT a number of steps but really an
end date.

3. the bottom panel has buttons for controlling the simulation:

Reset: for creating the simulation model and control panel out of its
description (either �le or concrete model).

Initialize: for putting the model in its initial state. The current date
becomes always 0.

Run: to run the simulation until the provided end date is reached. If the
end date is les or equal to the current date, nothing happens.

Step: to run one cycle of the simulation. All the in�uences scheduled at
the next date are executed.

Stop: to stop the simulation before the end date is reached. The current
cycle is always completed (and cannot be interrupted).

Each scheduler window is associated to its own thread, so there is a pos-
sibility of having several scheduler window opened to run several simulations
simultaneously.

Chapter 3

The ontologies

In modeling and simulation, the structure is often understood as a composition
of models, each model computing a function to produce outputs (outgoing events
or values) from inputs (incoming events or values). Of course, this composition
re�ects the structure of the system one wants to model but no discourse on how
to describe a system structure is explicitly given. On the other hand, Arti�cial
Intelligence has focused part of its theories on how people describe the reality.
This part of Arti�cial Intelligence evolved, partly under t he pressure of the web
developments (both about its contents and its services), into what is called today
the description of ontologies.

The term ontology has its origin in philosophy, where it is the name of a
fundamental branch of metaphysics concerned with existence. According to
Tom Gruber at Stanford University, the meaning of ontology in the context of
computer science, however, is �a description of the concepts and relationships
that can exist for an agent or a community of agents.� He goes on to specify that
an ontology is generally written, �as a set of de�nitions of formal vocabulary�.

Contemporary ontologies share many structural similarities, regardless of
the language in which they are expressed. Most ontologies describe individuals,
categories, attributes, and relations. In this section each of these components is
discussed in turn as well as the related Mimosa speci�cation. More descriptions
can be found in [10, 12].

3.1 Individuals

Individuals are the basic, "ground level" components of an ontology. The in-
dividuals in an ontology may include concrete objects such as people, animals,
tables, automobiles, molecules, and planets, as well as abstract individuals such
as numbers and words. Strictly speaking, an ontology need not include any in-
dividuals, but one of the general purposes of an ontology is to provide a means
of classifying individuals, even if those individuals are not explicitly part of the
ontology. In Mimosa, the model editor is provided for de�ning the individuals,
out of the de�ned categories. Only the individuals can actually behave and
therefore be simulated. In �gure 3.1, we have three plots (p1, p2 and p3) and
two people (John and Paul). The name of the individual is optional and indi-
cated before the �:�. The name after the semi-colon shall be explained in the

13

CHAPTER 3. THE ONTOLOGIES 14

Figure 3.1: Farmer and plot individuals.

Figure 3.2: Farmers owning plots.

following. It actually is the name of the category the individual belongs to.

3.2 Links

For the model to be properly called a structure, these individuals usually are
linked to each other in some meaningfull way. In our example,the �gure 3.2
shows some links between the individuals describing that John is proprietary of
p1 and p2, while Paul is proprietary of p3. The proprietary link is indicated by
the name ownership .

3.3 Attributes

Individuals in the ontology are described by specifying their attributes. Each
attribute has at least a name and a value, and is used to store information that
is speci�c to the individual it is attached to. For example th e p2 individual has
attributes such as:

surface 20

cover tree

The value of an attribute can be a complex data type; in this example, the value
of the attribute called cover could be a list of values, not just a single value.
In the �gure 3.3, some of the attributes are represented.

CHAPTER 3. THE ONTOLOGIES 15

Figure 3.3: The description of the plot p2.

Figure 3.4: A category hierarchy of plots and people

3.4 Categories

Categories are the speci�cation of the common features of groups, sets, or col-
lections of individuals. They are abstractions over sets ofconcrete individuals.
Some examples of categories are:

Person : the category of all people (describing what is common to allpeople);

Molecule : the category of all molecules (describing what is common toall
people);

Number : the category of all numbers;

Vehicle : the category of all vehicles;

Car : the category of all cars;

Individual : representing the category of all individuals.

Importantly, a category can subsume or be subsumed by other categories.
For example,Vehicle subsumesCar, since (necessarily) anything that is a mem-
ber of the latter category is a member of the former. The subsumption relation
is used to create a hierarchy or taxonomy of categories, witha maximally general
category which is calledIndividual in Mimosa, and very speci�c categories like
MaizeFarmer at the bottom. Figure 3.4 shows such a hierarchy of categories.

Usually what is common to a collection of individuals is that they share
the same attributes. In the �gure 3.4, all the people have a name and an
age. We also assume that each farmer has a cash�ow (but not a herder!). By
subsumption, any farmer and any herder has also a name and an age because
they are particular case of Person. In Mimosa an attribute has a name, a type

CHAPTER 3. THE ONTOLOGIES 16

Figure 3.5: A category hierarchy of plots and people with a relationship

which can be only a single type (short, integer, long, �oat, double, string and
color) and a cardinality to have list of values. If an attribu te refers to another
category, it is a relationships and no longer an attribute.

3.5 Relations

An important use of relations is to describe the relationships between individ-
uals in the ontology. In fact a relation can be considered as an attribute whose
value is another individual in the ontology, or conversely an attribute can be
considered as a relationship with another individual (a number is also an indi-
vidual, instance of the category of numbers). For example inthe ontology that
contains the Farmer and the Plot, the Farmer object might have the following
relation:

ownership Plot

This tells us that a Plot can be owned by a Farmer. Together, the set of
relations describes the semantics of the domain. In the �gure 3.5, a relation has
been added accordingly. In addition, we have also declared that a person can be
proprietary of any number of plots. One can see that the individuals described
in �gure 3.2 appear to be instances of the categories described in 3.5 and that
their links appear to be instances of the related relations.

In Mimosa, a relation is uni-directional and links a category to another, with
a cardinality.

The most important type of relation is the subsumption relat ion (is-superclass-
of, the converse of is-a, is-subtype-of or is-subclass-of)already mentioned in the
previous section.

Another common type of relations is the meronymy relation (written as part-
of) that represents how objects combine together to form composite objects. For
example, if we extended our example ontology to include objects like Steering
Wheel, we would say that "Steering Wheel is-part-of Ford Explorer" since a
steering wheel is one of the components of a Ford Explorer. Ifwe introduce
part-of relationships to our ontology, we �nd that this simp le and elegant tree
structure quickly becomes complex and signi�cantly more di�cult to interpret
manually. It is not di�cult to understand why; an entity that is described as
'part of' another entity might also be 'part of' a third entit y. Consequently,
individuals may have more than one parent. The structure that emerges is

CHAPTER 3. THE ONTOLOGIES 17

known as a Directed Acyclic Graph (DAG). This aspect is not introduced in
the ontological level of Mimosa but will be further discussed in the mereological
level where, precisely, a stronger account of meronymy is introduced (but not
yet implemented at this stage).

The part of the ontology consisting of the categories, attribute descriptions
and relations (either taxonomic or semantical) shall be called the conceptual
model. The part of the ontology consisting of the individuals, their attribute
values and their links shall be called theconcrete model. In the following the
editor to create the conceptual model shall be described. Inaddition, we shall
describe how to specify the dynamics associated to each category. Thereafter,
we shall introduce the concrete model editor.

Chapter 4

The conceptual model editor

4.1 The editor

The conceptual model editor is made of three panels for editing the conceptual
model:

� the graph panel for graphical editing.

� the list panel for editing the ontology as a list of de�nition s (a kind of
dictionary).

� the list panel of in�uence types to be explained in the section 5.

The list panel is the reference to know all the categories de�ned in the edited
conceptual model. In e�ect, a category may not appear in the graph panel.
Conversely, a category may appear several times in the graphpanel as well as
categories from other conceptual models. The rational behind this behavior
is that the drawing (hence the graph panel) must have an explanatory power
(not only a de�nitory one) and therefore any drawing clarify ing the explanation
should be possible.

We shall concentrate on the graph panel which is nevertheless easier to use
for de�ning categories. The starting point is the tool bar in the upper part of
the window as illustrated in the �gure 4.1 where seven buttons appear:

� the �rst one is the grabber for selecting an object (categoryor relations)
in the drawing and is always selected by default;

� the second is the note object to write down documentary comments to
associate to categories;

� the third is the link to associate a comment with a category;

Figure 4.1: The buttons of the ontology editor.

18

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 19

Figure 4.2: An annotated category.

Figure 4.3: The creation dialog for a category.

� the fourth is for creating or selecting categories to draw;

� the �fth one is the taxonomic relationship;

� the sixth is the semantic relationship;

� �nally, the seventh is the button to access the push down menufor ma-
nipulating the grid behavior as already described in 2.4.

The �rst three buttons as well as the last one are always present for each graph
editor, so it shall not be explained again. The �gure 4.2 shows the use of a note.

4.2 Category edition

4.2.1 Drawing a category

To draw a category in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the �gure 4.3.

This dialog is composed of two parts:

� the upper part lists all the categories available in all the opened ontologies.
Selecting one of these and typing either return or pushing the Existing
button shall draw the corresponding category at the selected place;

� the down part is used to create a new category with a name �eld to enter
a new name (which must be unique within the current ontology).

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 20

Figure 4.4: The category graphical form.

A rectangle with either one or two subparts shall be drawn at the selected
place 4.4:

� the upper part has two lines:

� the �rst line is the name of the category pre�xed by the name of the
ontology;

� the second line is the name of the way to de�ne the dynamics forthis
category1. NativeState is chosen by default and does nothing.

� the down part is the list of attributes with their speci�cati on.

4.2.2 Editing a category

A category can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The category editor dialog (4.5) shows up with the following
parts:

� the name of the category, which cannot be changed;

� an �abstract� check box to specify whether the category can have instances
or not (e.g. most probably, in our example, there shall not bedirect
instances of Person, but only of Farmer and Herder);

� the super type, i.e. the category subsuming this category;

� a panel where one can specify either the documentation, the attributes,
the relations and the behavior (see chapter 5).

In �gure 4.5, one shows the attribute panel where the local attributes can be
added or deleted through a popup menu. Additionally, one cansee the list of
inherited attributes as shown in �gure 4.6, but this list can not be edited. Only
the locally de�ned attributes can be edited, the inherited l ist being computed.

4.2.3 Deleting a category

A category can be deleted by selecting it and selectingRemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the category must be removed from the ontology:

� if yes, the category is removed both from the drawing and the list of
categories de�ned in the ontology;

1For UML literates, it looks like a stereotype, and in fact it h as a related semantics with
respect to the MDA speci�cations.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 21

Figure 4.5: The category editor with the attribute panel.

Figure 4.6: The category editor with the inherited attribut es.

� otherwise, only the drawing is removed but the category remains as an
existing category.

4.3 Relation edition

4.3.1 Drawing a relation

To draw a relation in a given place it is enough to click on the corresponding
button and then from a category (called the source category)to another one
(called the target category), or to right click at the desired place to show up
the same toolbar as a popu menu. A new dialog is opened as illustrated in the
�gure 4.7.

This dialog is also composed of two parts even if in the �gure 4.7 only one
shows up:

� the upper part lists all the existing relations available between the two

Figure 4.7: The creation dialog for a relation.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 22

Figure 4.8: The example of a relation.

Figure 4.9: The relations of a category.

selected categories. Selecting one of these and typing either return or
pushing the Existing button shall draw the corresponding relation be-
tween the two categories.

� the down part is used to create a new relation with three �elds:

� a name �eld to enter a new name (which must be unique within the
source category);

� a cardinality �eld to specify whether the relation can reference one,
several or any number of objects of the given target category.

The arrow from the source category to the target category is annotated by
all the relevant information as shown in the �gure 4.8. Addit ionally, the �*�
means that each of these links can be drawn with any number of plots.

The list of de�ned relations for a category also appears in the relation panel
of the category editor as shown in the �gure 4.9. A relation can be added or
removed directly from this panel but the added relations shall be drawn only if
requested as an existing relations.

The subsumption or taxonomic relationships is a particularcase where noth-
ing need to be speci�ed but the source and target categories.

4.3.2 Editing a relation

A relation can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The same editor appears as for creating it.

4.3.3 Deleting a relation

A relation can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the relation must be removed from the model:

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 23

� if yes, the relation is removed both from the drawing and the list of rela-
tions de�ned for the source category;

� otherwise, only the drawing is removed but the category remains un-
changed.

A relation can also be removed from the relation panel of the source category
editor. If it is deleted this way, all the drawings of the relation shall disappear
as well.

Chapter 5

The dynamics

5.1 Introduction

For each category, one can associate a speci�cation of the dynamics of the
corresponding individuals. Basically, it is made by selecting a way to specify
the dynamics (a state machine, a markov process, a di�erential equation, and
the list is extensible at will) and then by specifying the dynamics according to
the selected way (the states and transitions for a state machine, the states and
transition matrix for a markov process, etc.). The way to specify the dynamics
shall be called thestate (although it does not only de�nes the state but also
how the state changes) and the associated speci�cation thestate speci�cation.
The state can be speci�ed directly when creating a new category as explained in
the section 4.2.1. Otherwise, it is enough to open the category editor as shown
in �gure 5.1 and to select the behavior panel.

The behavior panel is itself made of four subpanels:

� the probe panel is used to de�ne what can be observed from the individu-
als. It is used for displaying what happens during the simulation or saving
it to any media for further processing (statistics, etc.). The probes shall
be described in the section 5.2.4.

� the incoming in�uences panel is used to specify the events the individuals
are able to react to. They shall be explained in the sections 5.2.1 and
5.2.3.

� the outgoing in�uences panel is used to specify the events the individuals
are producing. They shall also be explained in the sections 5.2.1 and 5.2.3.

� the behavior panel (sorry, it has the same name as the upper level panel)
is used to specify the state and its speci�cation. In the �gure 5.1, one can
see the drop-down menu in the upper part to select the state (i.e. the way
one wants to specify the behavior) and the associated speci�cation. Here,
the chosen way to specify the behavior is through a state chart as speci�ed
in UML called StateChartState . Therefore a corresponding state chart
editor is shown.

In addition, at the top, there is the speci�cation of the mult iplier between

24

CHAPTER 5. THE DYNAMICS 25

Figure 5.1: The behavior panel of the category.

the global time grain and the local time grain1. Further explanation on the
representation of time in Mimosa can be found in section 5.2.5.

To understand the o�ered possibilities and, more importantly, the behavior
one can expect from these various states and state speci�cations, it is necessary
to go down to the ground and expose a little bit of the underlying machinery.
This is done in the following section. Thereafter, we shall introduce some already
existing states and their corresponding speci�cations.

5.2 The operational semantics

Globally, the underlying machinery is nothing but a discrete event simulation
system. The running model is made of entities sending time stamped events
which are delivered to their target entities at the speci�ed dates, possibly gener-
ating new time stamped events and so on. The scheduler is in charge of ordering
the events by their time stamps and to execute them in order. The only thing to
specify is how each entity behaves, i.e. generates new time stamped events and
reacts to incoming events. It is the purpose of the next section. In the following
the events are called in�uences for obscure (another name for historical) reasons
[8].

5.2.1 The model

The underlying simulation semantics is based on an extension of //-DEVS (see
[13]) called M-DEVS as a shorthand for Mimosa-DEVS. Therefore, one must

1The grain is the smallest di�erence between any two time meas ure which can be distin-
guished.

CHAPTER 5. THE DYNAMICS 26

understand how M-DEVS works in order to master the behavior of the models
although most details are assumed to be hidden by higher level of abstractions
as suggested in the introduction of this chapter.

A M-DEVS entity is a tuple:

< X; Y; O; init; � ext ; � int ; � log ; � con ; � ext ; � int ; � log ; � str ; � >

with an implicit state space on which no hypothesis is made, where:

X : is a set of incoming in�uences;

Y : is a set of outgoing in�uences;

O: is a set of output ports the elements of Y are sent to;

init : is a function to set the model in its initial state;

� ext : is a function to specify the reaction to a set of incoming in�uences (all the
in�uences occurring at the same time are given simultaneously);

� int : is a function to specify the internal change (when it occurs is speci�ed by
ta and what occurs is speci�ed by� int);

� con : is a function to specify the reaction to the occurrence simultaneously of
an internal change and the arrival of a set of incoming in�uences;

� log : is a function to specify the reaction to a set of logical in�uences, possibly
producing further logical in�uences;

� ext : is a function to provide the outgoing in�uences (when it is called is also
speci�ed by �);

� int : is a function to provide the internal in�uence to occur after a duration of
ta ;

� log : is a function to provide the logical in�uences to occur after each transtion;

� str : is a function to provide the structural changes to occur alsoafter each
transtion;

� : is a function which provides the duration until the next inte rnal in�uence;

For all functions but init , the duration since the last cycle (see below) is given
as an argument. Therefore the internal logic of any atomic model is based on
durations.

Although complicated at the �rst sight, the logics is very si mple:

� � ext and � ext are the functions to issue the events (� ext) and to handle
them (� ext). It corresponds straight away to the intuitive event based
mechanism as explained in introduction. The events are produced when
� elapsed since the last transition;

� � int , � and � int are the functions for specifying the spontaneous behavior,
i.e. what the �box� does (� int), when (�) and how (� int);

� � log and � log are used to propagate information (� log) and make compu-
tations based on this information (� log);

CHAPTER 5. THE DYNAMICS 27

� � str speci�es the possible modi�cations in the interconnection topology
(see below).

Mimosa implements a unique so-called M-DEVS bus which is a set of M-
DEVS entities with interconnected ports. More precisely, a M-DEVS bus is a
pair < E; links > where:

E : is a set of M-DEVS entities;

links : is a mapping from M � O into E specifying a mutable interconnection
topology;

For simulation, the M-DEVS bus runs in cycles. Each cycle corresponds to
a certain date where everything happening at that date is propagated through
all the M-DEVS atomic models. At each cycle:

1. each model is asked for itsta . Let min � be the smallest value;

2. the global time is advanced bymin � . Let:

� C be the set of models with the samemin � ;

� C0 2 C be the set of models producing outputs;

3. � ext is called for each model inC0 and the outgoing in�uences are gathered
and their destinations are identi�ed using links ;

4. for each modelm in C:

� if m has simultaneous incoming in�uences and an internal change,
� con is called;

� if m has only an internal change,� int is called;

� if m has only incoming in�uences, � ext is called;

and all the outgoing logical in�uences are gathered;

5. all the logical in�uences are dispatched vialinks by calling � log and � log

until there is no logical in�uences left (be careful about possible loops
which are not detected).

6. all the structural changes are dispatched by calling� str .

For each individual, MIMOSA shall generate a correspondingentity which
shall be initialized from the list of its attribute values in a state speci�c way. A
more formal and detailed account can be found in [11].

5.2.2 The ports

A port provides a way to connect M-DEVS entities together. A port can connect
an entity to any number of other entities. In Mimosa we distinguish between
a port and a port name. A port name can be a simple name (aString),
designating all the entities linked through the given port, or a name with an
index (with the syntax <name>['('<int>')']), designating one of the entities
linked through this port. In the case the cardinality of the p ort is one (only one
entity can be linked through this port). The two possible port names<name>or

CHAPTER 5. THE DYNAMICS 28

<name>'(0)' are equivalent. Therefore the index is optional if the cardinality
is 1.

If the reader perceives some relationship between a port anda link, it is right.
We are here using the vocabulary used in the modeling and simulation commu-
nity which is unrelated to the vocabulary used in the ontology community. As
for individuals generating M-DEVS entities, the links are used to produce the
initial interconnection topology as ports.

5.2.3 The in�uences

An in�uence is an event which is transmitted between two M-DEVS entities. In
Mimosa we also distinguish between in�uence types and in�uences as instances
of in�uence types.

The in�uence types are just names but must be declared. Thesenames
are unique in a given conceptual model (or ontology). This type level is not
really useful at this stage but provides a provision for further typing (like the
declaration of the arguments) to be used for connectivity with other buses like
HLA or CORBA where the type of transmitted information has to be declared.

The in�uences are instances of in�uence types. For the time being they have:

� a name which is the name of the corresponding in�uence type;

� a content which is either empty or a collection of elements.

For ensuring communication between entities possibly written in various lan-
guages, and in particular, in various scripting languages,a standard and limited
format is imposed for the content. A content is necessarily acollection (at the
implementation level an instance of JavaArrayList) of:

� collections, allowing recursive structures;

� simple types: shorts, integers, longs, �oats, doubles, booleans and strings
(respectively implemented internally in Java as instancesof Short, Integer,
Long, Float, Double, Boolean and String).

No other kind of data can be send through the in�uences.

5.2.4 The probes

It is possible to associate to any individual (therefore to any M-DEVS entity), a
visualization window for displaying any information evolving over time (e.g. the
entity state changes). Having no hypothesis on the nature ofthe entity states,
there is NO automatic synchronization between the model andits visualization.
To perform this visualization, one has to declare a list of probes given by their
name, type (only simple types are allowed) and cardinality. When specifying
the behavior, i.e. the various transition functions, the user has to explicitly
send probe values whenever he wants to signal a change. The probe value is
propagated to the visualization window which can perform whatever one wants:
drawing or saving the data for further processing.

CHAPTER 5. THE DYNAMICS 29

5.2.5 The time

The underlying time for the whole system is considered discrete (regardless of
the grain which could be as �ne as picoseconds) and thereforemapped on natural
numbers. As already mentioned, an M-DEVS entity only considers durations.
In addition, these durations can only be expressed as integers.

When simulating an M-DEVS entity, a local time is deployed. The creation
of an M-DEVS atomic model either at the start of the simulation or during
it, de�nes the origin of the local time (0). All the durations are added up,
generating a local date as an integer. In particular, this local time is used to
compute the durations transmitted to the M-DEVS entity.

A step further, the M-DEVS bus de�nes a global time. The origin of the
global time (0) is the start of the simulation (initializati on always occurs at the
global time 0). The M-DEVS entity local times are mapped to the global time
in two ways:

� the origin of the local time is situated in the global time at t he (global)
time of creation of the M-DEVS entity;

� the ratio between the local time grain and the global time grain is given.
The global time grain is assumed to be the smallest possible grain able
to take into account the grain of any other atomic model as an integral
multiplier of the global grain.

Still at this stage, the time is a natural number without dime nsion (without
unit). The correspondence between this time and the real time where the origin
of simulation corresponds to a real date and the global grainhas a unit (pi-
cosecond, hour or week) shall be speci�ed externally. It is foreseen to be able to
declare this information to the scheduler and use this reference to de�ne in an
easier way the time units of the entities. It is not yet completely implemented
at this stage.

In summary, any M-DEVS entity has

� a grain (the smallest undistinguishable time di�erence) de�ned implicitly
by having durations expressed with integers and explicitlyby a multiplier
with the global grain;

� an origin de�ned implicitly by having the entity life starti ng at 0 and
explicitly by a position of this origin with respect to the gl obal time.

5.3 The behavior speci�cation

In order to describe the behavior of an entity, the user must expect to have
to specify each of the mentioned function for proper functioning of the model,
hence the importance to understand the underlying operational semantics as
described before. However, higher level speci�cations canbe made as various
kind of state machines, petri nets, directly speci�ed di�er ential equations with
various means of integration as long as there execution can be mapped in the
previously described functions. These extensions can be added at will to the
system in a way which is described in the programmer's manual.

When editing a category behavior, a number of panes are dedicated for
specifying the behavior (see the �gure 5.1):

CHAPTER 5. THE DYNAMICS 30

� the incoming in�uences to declare the list of incoming in�uences;

� the outgoing in�uences to declare the list of outgoing in�uences;

� the probes to declare which information is dynamically provided during
entity simulation;

� the behavior pane to describe the behavior itself. At the topof this pane,
there is drop down menu of available ways of specifying the behavior.

The available means for specifying the behavior are as follows:

� by writing a piece of Java program and declare it to the Mimosasystem
to make it available in the user interface;

� by specifying the behavior of each of the mentioned functionusing a script-
ing language. Several scripting languages are available: java, scheme, jess
(unavailable due to a need for a license), python and prolog (not fully
tested yet);

� with a state/transition diagram where the conditions and actions can be
speci�ed in one of the scripting languages mentioned before;

� with any higher level mean of speci�cation as markov processes, etc. de-
pending on the availability of the corresponding plug-in.

These various technics shall be described in turn in the nextsections.

5.3.1 Programmatic speci�cation

This section is more appropriate for the programmer's manual but is included
here to introduce the basics which are made available in the other ways of spec-
ifying the model behavior. With your favorite Java IDE (for e xample Eclipse
(http://www.eclipse.org)), create a new project with a pac kage (let's call it ex-
ample) in which you have to create a class as a subclass ofmimosa.scheduler.NativeState .
The result is a �le with the following content:

package example;

import mimosa.scheduler.NativeState;

public class MyExample extends NativeState {
}

NativeState de�nes ten (10) methods doing nothing by default:

� public void doInstanceInitialize() throws EntityExcepti on; : which
is called only once when the entity is created (for example inthe model
editor). Use it to create the initial content of state variab les.

� public void doInitialize() throws EntityException; : equivalent to
the init function. It is called each time the model is initialized by the
scheduler. As a principle, each time a model is initialized,exactly the
same initial state should result. If you are using random generators, try
to reinitialize it with the same seed.

CHAPTER 5. THE DYNAMICS 31

� public void doExternalTransition() throws EntityExcepti on; : equiv-
alent to � ext .

� public void doInternalTransition() throws EntityExcepti on; : equiv-
alent to � int .

� public void doLogicalTransition() throws EntityExceptio n; : equiv-
alent to � log .

� public void doConfluentTransition() throws EntityExcept ion; : equiv-
alent to � con .

� public void doGetExternal() throws EntityException; : equivalent
to � ext .

� public void doGetInternal() throws EntityException; : equivalent
to � and � int together.

� public void doGetLogical() throws EntityException; : equivalent to
� log .

� public void doGetStructural() throws EntityException; : equiva-
lent to � str .

If something is going wrong, just throw an EntityException with the entity
and a message as parameters. The exception will be taken intoaccount by
the architecture in an appropriate way. Do not forget to catch any possible
exception and raise anEntityException accordingly for securing the model
execution. Because they are prede�ned for doing nothing, you can only de�ne
the methods you actually need.

When calling each method, this variable is de�ned and appropriately bound
in the context:

time: contains the duration since the previous transition (remember that these
methods are called in a given cycle and the M-DEVS bus advances time
from a cycle to another);

The following methods are de�ned for accessing the incomingin�uences:

� getAllInfluences() : to get the list of incoming in�uences in any order;

� getInfluence(String name) : to get the list of incoming in�uences with
the given name. It is used to control the order in which to handle the
incoming in�uences;

� getInternalInfluence() : to get the incoming internal in�uence.

To program each functionality, a number of methods are de�ned by cate-
gories:

� to manipulate random generators2:

� public Random newRandom();

2 it is necessary to hide which kind of generator is used. Curre ntly the Mersenne Twister
random generator is known as one of the best and provided in Mi mosa.

CHAPTER 5. THE DYNAMICS 32

� public Random newRandom(long seed);

� public boolean newBoolean(Random rand);

� public int newInt(Random rand,int max);

� public double newDouble(Random rand);

� to easily create ports and port references:

� public Port port(String name,int index);

� public Port portRef(Port port...);

� to manipulate the in�uence content:

� Object contentOf(Influence influence) : which returns either
null if there is no content or a Collection of objects (as de�ned
in 5.2.3).

� List list(Object... objects) : to create a list of objects as a
content or sub-content.

� Object object(T i) : where T is one of the Java simple types (short,
int, etc.) to encapsulate them within the corresponding class instance
(Short, Integer, etc.).

� T toT(Object o) : where T is one of the Java simple types (short,
int, etc.) to unbox them from the corresponding class instance (Short,
Integer, etc.).

� to get the initial value of a parameter:

� public Object getParameter(String name) .

� to post an in�uence at a given port:

� void sendExternal(String portName,String influenceType Name),

� void sendExternal(Port portName,String influenceTypeNa me),

� void sendExternal(String portName,String influenceType Name,Object
args) ,

� void sendExternal(Port portName,String influenceTypeNa me,Object
args) .

� void sendLogical(String portName,String influenceTypeN ame),

� void sendLogical(Port portName,String influenceTypeNam e) ,

� void sendLogical(String portName,String influenceTypeN ame,Object
args) ,

� void sendLogical(Port portName,String influenceTypeNam e,Object
args) .

� void sendInternal(int duration,String influenceTypeNam e) ,

� void sendInternal(int duration,String influenceTypeNam e,Object
args) ,

� void reply(LogicalInfluence influence,String influence TypeName),

These methods can be called in most methods.

CHAPTER 5. THE DYNAMICS 33

� to signal a state change by a probe:

� public void sendProbe(String name,Object args...) .

� to destroy itself:

� public void die() .

It removes the entity from the scheduler, removes of the linkreferences as
well as all the scheduled incoming in�uences.

In addition, a number of methods are de�ned to dynamically create and link
entities during the simulation:

� void addPort(PortReference name, String categoryName, bo olean
traced, Map<String,Object> parameters) : creates an entity as an in-
stance of the given category, whether it is traced or not and the map of
attribute values;

� void addPort(String name, String categoryName, boolean tr aced,
Map<String,Object> parameters) : same as above when there is a sim-
ple syntax for the port reference;

� void linkPort(PortReference portRef1, PortReference por tRef2) :
links the port reference to the entities referenced by the second port ref-
erence, creating new links;

� void linkPort(String portRef1, PortReference portRef2) : same as
above;

� void linkPort(PortReference portRef1, String portRef2) : same as
above;

� void linkPort(String portRef1, String portRef2) : same as above;

� void removePort(PortReference portRef) : removes the entities from
the given port, without destroying the referenced entities (they kill them-
selves usingdie).

� void removePort(PortReference portRef) : same as above.

To simplify the speci�cation of the parameters in addPort , two additional meth-
ods are provided:

� public Pair pair(String name,Object args...) : for creating a pair
(parameter name, value);

� public Map<String,Object> parameters(Pair args...) : for creating
the adequate map from the pairs.

For example, if we want to program the behavior of a clock which sends a
tick in�uence to its clocked port at interval time, we could have the following
code:

CHAPTER 5. THE DYNAMICS 34

package example;

import mimosa.scheduler.NativeState;

public class MyClock extends NativeState {

private int interval;
/**
* @see mimosa.scheduler.NativeState#doInitialize()
*/

@Override
public void doInitialize() throws EntityException {

interval = getParameter("interval");
}
/**
* @see mimosa.scheduler.NativeState#doGetInternal()
*/

@Override
public void doGetInternal() throws EntityException {

sendInternal(interval,"tick");
}
/**
* @see mimosa.scheduler.NativeState#doGetExternal()
*/

@Override
public void doGetExternal() throws EntityException {

sendExternal("clocked","tick");
}

}

in which we declare a variable to cache the parameter value (the interval between
two ticks), the function to get the parameter value, the � function which signals
an output after the given interval and � ext where a single in�uence is sent to
the port.

Of course, it is not enough to write the code. This code has to be known
from Mimosa. In order to do that, you have to create an XML �le i n which
Mimosa can read the following declarations:

<?xml version="1.0"?>
<mimosamodule name="Example" package="example">

<behaviour notion="EntityType" implementation="MyCloc k">
<parameters>

<parameter name="interval" cardinality="1" type="java. lang.Integer"/>
</parameters>
<outInfluences>

<influenceType name="tick"/>
</outInfluences>
<outPorts>

<port name="clocked" entityType="EntityType"/>
</outPorts>

</behaviour>

CHAPTER 5. THE DYNAMICS 35

</mimosamodule>

This XML �le contains everything you would have declared thr ough the user
interface and additionnaly de�nes through the package and implementation
attributes where to �nd the corresponding class.

You then have to create a folder calledexample, to put the .jar containing
the compiled class, to de�ne a �le called example-config.xml and to put the
whole folder in the plugins subdirectory of Mimosa. By trying this example, the
behavior MyClock will appear in the list of available behaviors.

In general, any new behavior (or way of de�ning behaviors) can be added
to Mimosa by putting in the plugins directory a folder called xxx with a �le
called xxx-config.xml in it with the related XML content and as many .jar
as necessary. Further details as well as the complete syntaxof the XML �le
shall hopefully be presented in the programmer's manual.

5.3.2 Scripted speci�cation

The previous procedure being relatively heavy but necessary if one wants either
an e�cient piece of code or to use Java to encapsulate a legacysimulation
software, we provide the same functionality by using scripting languages directly
through the user interface. The basic principles are the same and we are using
the same names for the variables and functions or equivalentfor consistency.
For using this functionality, you have to select LanguageState in the drop down
menu of the behavior pane. Immediately below, you will have another drop
down menu to select the desired scripting language.

In a model, any combination of scripting languages can be used because
all the speci�c data structures are translated into a standard Java format and
back to the speci�c data structures. So feel free to use any one you �nd most
appropriate for your usage. Of course, it requires to be multi-lingual!

Java scripting

Java scripting makes available the full Java language by using the bean shell
library (see [5] for getting the related documentation). In particular, all the
methods de�ned in the section 5.3.1 are readily available. However to call them,
a new variable is de�ned: self . The methods can be called by addressing them
to self . For example, for the � ext function, the code is:

self.sendExternal("clocked","tick");

There is one drawback in using Java scripting: all the Java types have to
be pre�xed explicitly by the package name (for example java.lang.Integer
instead of simply Integer).

Scheme scripting

The Scheme language is a kind of pure functional language (based on lambda-
calculus). The facilities for manipulating symbols and lists make it particularly
useful for qualitative and symbolic manipulations, much less for numerical com-
putations. We are using the Kawa library ([6]: fast and complete but with
scoping problems) as well as JScheme ([3]: limited and slow but semantically
consistent) for providing Scheme. The documentation for the language itself

CHAPTER 5. THE DYNAMICS 36

can be found on the corresponding web site. The appendix A provides a short
reference to the Scheme language as well as the list of provided functions for
calling Mimosa.

Jess scripting

Jess is a rule base language with a forward chaining semantics (see [2]). The
behavior is described as a single set of rules of the form<conditions> =>
<actions> . Whenever the conditions are met, the corresponding rule is�red
and the actions executed. In our case, each M-DEVS function introduces the
time, the in�uences and the function name in the fact based and the rules are
�red accordingly until no rule is applicable. The example of the clock looks like
this:

(defrule initialize1
(initialize)
=>
(make (interval (getParameter "interval"))))

(defrule getExternal
(getExternal)
=>
(sendExternal "clocked" "tick"))

(defrule getInternal
(getInternal)
(interval $value)
=>
(sendInternal $value "tick"))

It is no longer maintained because Jess requires a licence which is free for
academics but costly for others. The library is not providedwith the distribution
for that reason but can be downloaded from [2].

Python scripting

The implementation uses the Jython library whose documentation can be found
on [7]. We are using the possibility in this version of Pythonto call Java objects
with the standard Python syntax. Accordingly, the variable self is de�ned as
well as all the variables as in Java and the corresponding methods can be called
directly. So, there is not much di�erence with Java.

Prolog scripting

Prolog ia a rule base language with a backward chaining semantics. The behav-
ior is described as a single set of rules of the form<conclusion> :- <conditions> .
The program is run by asking for a conclusion and the program tries to �nd
the possible proofs. As in Jess, each M-DEVS function introduces the time,
the in�uences and the function name in the fact based and the rules are �red
accordingly until no rule is applicable. The run predicate must be de�ned. The
example of the clock looks like this:

run :- initialize,
X is getParameter(interval),

CHAPTER 5. THE DYNAMICS 37

asserta(interval(X)).
run :- getExternal,

sendExternal(clocked,tick).
run :- getInternal,

interval(X),
sendInternal(X,tick).

Implemented but not yet fully tested. The implementation uses the tuProlog
library whose documentation can be found on [4].

Smalltalk scripting

Implemented but not yet fully tested. The implementation uses Athena (see the
we site [1]) which is a lightweight implementation of Smalltalk for embedded
applications. The resulting scripts look awfull so it would probably not be
explored further.

5.3.3 State charts

Coming soon.

5.3.4 Further extensions

This level being extensible at will by adding further meta-ontologies, this chapter
shall only describe some of them as provided in the �rst versions of Mimosa.
How to de�ne new meta-ontologies is described in the programmer's manual. In
this chapter, we shall introduce the meta-ontologies for object, space, cellular
automata and multi-agent systems.

The objects

Most categories have very simple behavior corresponding roughly to what is
available in objet-oriented programming. For the categories, it is not necessary
to provide the full M-DEVS functionality (although object- orientedness can be
mapped in a subpart of M-DEVS). We have provided two versionscorresponding
to most needs:

� StaticObject is used when the only functionality is around state variable
values being set and get;

� SimpleObject is an extension ofStaticObject where external and logical
in�uences are considered as method calls: the external in�uences when
the SimpleObject will change state in response, and the logical in�uences
when only information updates and requests have to be handled.

StaticObject contains a set of state variables to choose among the at-
tributes 3. The following incoming in�uences are expected:

� setState name value : as an external in�uence to change the value of
one of the variables;

3 It is assumed that a state variables always has an initial val ue to be set from the corre-
sponding attribute.

CHAPTER 5. THE DYNAMICS 38

Figure 5.2: The behavior panel of a simple object.

� getState name: as a logical in�uence to ask for the value of one of the
variables.

The following outgoing in�uences are issued in response to the getState in�u-
ence:

� state name value : as a logical in�uence to communicate the value of the
requested state variable;

� undefinedState name : as a logical in�uence to communicate the state
variable has no value.

SimpleObject has the same semantics asStaticObject and as such pro-
vides to the same incoming and outgoing in�uences. In addition to de�ning the
state variables, the modeler can add as many additional incoming and outgoing
in�uences as he wants. SimpleObject allows to associate a piece of code to
execute to each incoming in�uence. In �gure 5.2, the upper part shows on the
left the list of de�ned attributes and on the right the list of attributes which
have been chosen as state variables. In the bottom part, one can see the chosen
scripting language, the chosen incoming in�uence and the associated code. The
arguments of the in�uence if any are stored in the variablearguments as a list.

The spaces

Coming soon.

CHAPTER 5. THE DYNAMICS 39

The cellular automata

Coming soon.

The multi-agent systems

Coming soon.

Chapter 6

The concrete model editor

At this stage, the conceptual model has been completely de�ned both with
its structural part (the ontology properly speaking) with t he categories, their
attributes and their relations, and its dynamical part by sp ecifying in a way
or another the dynamics of the individuals speci�ed by each category. The
concrete model editor shall use these de�nitions for providing the user with
the possibility to describe as many concrete models as he wants as a set of
individuals, attribute values and links. These individuals, attribute values and
links are nothing but the instances of the corresponding categories, attribute
descriptions and relations. Their edition shall be described in the sections 6.1
and 6.2.

In addition, the user must specify what to do with the probes (see 5.2.4). As a
reminder, the probes are speci�ed in the dynamical description of the categories
and must be sent to signal a state change of interest, usingsendProbe. The
concrete model editor provides the mean to specify the outputs where one wants
to send these probes. These outputs can be visual as graphs, graphs, grids, etc.
or can be �les, databases or even channels to various tools running in parallel
like R, Excel, etc.. This part shall be described in the section 6.3.

Finally, the user can visually specify a control panel to be used during the
simulation which includes:

� the visual outputs;

� the widgets to parameterize the model.

This latter part shall be described in section 6.4.
The concrete model editor is made of two panels:

� on the left pane, there is a list of existing models. These models can be
created or removed by double-clicking in this pane.

� on the right pane, there are two graph panels:

� the �rst one is a graph panel very similar to the one used for creating
conceptual models. The top of the panel is occupied by a drop down
menu to select the conceptual model from which one wants to instan-
tiate the individuals and links. A concrete model can be drawn from
several conceptual models combining various sources of knowledge.

40

CHAPTER 6. THE CONCRETE MODEL EDITOR 41

Figure 6.1: The buttons of the model editor.

� the second one is used to visually draw the control panel for the
simulation of the corresponding model.

Apart from the conceptual model drop down menu, the starting point is the
tool bar in the upper part of the �rst graph panel as illustrat ed in the �gure 6.1
where six buttons appear:

� the �rst one is the grabber for selecting an object (individual or links) in
the drawing and is always selected by default;

� the second is the note object to write down documentary comments to
associate to individuals;

� the third is the link to associate a comment with an individual;

� the fourth is for creating or selecting individuals to draw;

� the �fth one is the link;

� the sixth is used for creating an output;

� the seventh is a link between an individual and an output to specify where
to send the probes;

� �nally, the sixth is the button to access the push down menu for manipu-
lating the grid behavior as already described in 2.4.

6.1 Individual edition

6.1.1 Drawing an individual

To draw an individual in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the �gure 6.2.

This dialog is composed of two parts:

� the upper part lists all the individuals available in the selected model.
Selecting one of these and typing either return or pushing the Existing
button shall draw the corresponding individual at the selected place.

� the down part is used to create a new individual with two �elds:

� a drop down menu from which to select the category one wants to
create an individual from;

� a name �eld to enter a name which is optional but can be used for
documentation purpose.

CHAPTER 6. THE CONCRETE MODEL EDITOR 42

Figure 6.2: The creation dialog for an individual.

Figure 6.3: The individual graphical form.

A rectangle is drawn as illustrated in the �gure 6.3 with a name which
composed of the optional name of the individual, a semi-colon and the category
name which is itself composed of the ontology name and the category name.
Under its identi�cation, the list of attribute values is ava ilable.

6.1.2 Editing an individual

An individual can be edited by double-clicking on it, or by selecting it and
selectingEdit... from the Edit menu, or by right-clicking on it and selecting
Edit... in the popup menu. The individual editor dialog (6.4) shows up with
the following parts:

� the name of the category, which cannot be changed;

� the name of the individual which can be changed at will;

� a �trace� check box to specify whether the individual has to be traced. This
allows to trace the M-DEVS function calls speci�cally for one individual;

� a panel where one can specify the attribute values.

6.1.3 Deleting an individual

An individual can be deleted by selecting it and selectingRemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the individual must be removed fromthe model:

� if yes, the individual is removed both from the drawing and the list of
existing individuals de�ned in the model;

� otherwise, only the drawing is removed but the individual remains as an
existing individual.

CHAPTER 6. THE CONCRETE MODEL EDITOR 43

Figure 6.4: The individual editor with the attribute panel.

Figure 6.5: The creation dialog for a link.

6.2 Link edition

6.2.1 Drawing a link

To draw a link in a given place it is enough to click on the corresponding button
and then from an individual (called the source individual) t o another one (called
the target individual), or to right click at the desired plac e to show up the same
toolbar as a popu menu. A new dialog is opened as illustrated in the �gure 6.5.

This dialog is composed of the list of available relations between the two
selected individuals as de�ned in the corresponding category of the source in-
dividual. Depending on the arity of the relation (i.e. the number of indices to
fully specify the relation), as many text �elds are displayed underneath to enter
the indices values. In the �gure 6.5, the relation is of arity 1, so only one index
must be speci�ed.

The arrow from the source individual to the target individua l is annotated
by the relation name as shown in the �gure 6.6. The index values are written
between parenthesis.

6.2.2 Deleting a link

A link can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the link must be removed from the model:

� if yes, the link is removed both from the drawing and the list of links
de�ned for the model;

� otherwise, only the drawing is removed but the link remains unchanged.

CHAPTER 6. THE CONCRETE MODEL EDITOR 44

Figure 6.6: The example of links.

6.3 Output speci�cation

The �gure 6.7 shows a concrete model with three individuals and one output.
The arrows are connecting the individuals to an output which is, in this case,
a 2D grid view, specifying that the corresponding probes must be sent to that
output.

6.3.1 Drawing an output

To draw an output in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the �gure 6.8.

This dialog is composed of two parts:

� the upper part lists all the outputs available in the selected model. Select-
ing one of these and typing either return or pushing theExisting button
shall draw the corresponding output at the selected place.

� the down part is used to create a new output with a drop down menu from
which to select the kind of output one wants to create.

An ellipse is drawn as illustrated in the �gure 6.9 with a name which com-
posed of the kind of chosen output and an automatically generated name be-
tween parenthesis to uniquely identify this output for furt her manipulation.

6.3.2 Editing an output

An output can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The output editor dialog (6.10) shows up with two parts:

� a drop down menu to choose the kind of output;

CHAPTER 6. THE CONCRETE MODEL EDITOR 45

Figure 6.7: A concrete model with an output speci�cation.

Figure 6.8: The creation dialog for an output.

Figure 6.9: The output graphical form.

CHAPTER 6. THE CONCRETE MODEL EDITOR 46

Figure 6.10: The output editor with an attribute panel.

� a panel which depends entirely on the kind of output. In the �gure 6.10,
it is an editor to attribute colors to various probe values for visualization.
If the output is directed to a �le, the �le should be de�ned, et c.

The available outputs depend on the behavior associated to the correspond-
ing individual and are therefore described with the possible dynamical speci�-
cations. However, a number of general purpose outputs are provided and shall
be described in the following.

ProbeView

Coming soon.

ProbeFileOutput

Coming soon.

PlotView

Coming soon.

GraphView

Coming soon.

6.3.3 Deleting an output

An output can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the output must be removed from the model:

� if yes, the output is removed both from the drawing and the list of existing
outputs de�ned in the model;

� otherwise, only the drawing is removed but the output remains as an
existing output.

CHAPTER 6. THE CONCRETE MODEL EDITOR 47

Figure 6.11: The creation dialog for an output edge.

Figure 6.12: The control panel toolbar.

6.3.4 Drawing an output edge

To draw an output edge in a given place it is enough to click on the corresponding
button and then from an individual (called the source indivi dual) to an output
(called the target output), or to right click at the desired p lace to show up the
same toolbar as a popu menu. A new dialog is opened as illustrated in the �gure
6.11.

This dialog is composed of the list of available output edgesbetween the
individual and the output.

6.3.5 Deleting an output edge

An output edge can be deleted by selecting it and selectingRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output edge must be removed fromthe model:

� if yes, the output edge is removed both from the drawing and the list of
output edges de�ned for the model;

� otherwise, only the drawing is removed but the output edge remains un-
changed.

6.4 Control panel de�nition

The control panel editor is used to position the various control panel elements
on the control panel. The toolbar is shown in the �gure 6.12 where, apart from
the usual buttons, we have two main buttons:

� the green button is used to add an output view to the control panel;

� the yellow button is used to add a parameter editor to the control panel.

The �gure 6.13 shows a control panel with two parameter editors (yellow)
and one output view (green).

CHAPTER 6. THE CONCRETE MODEL EDITOR 48

Figure 6.13: The control panel view.

CHAPTER 6. THE CONCRETE MODEL EDITOR 49

Figure 6.14: The creation dialog for an output view.

6.4.1 Drawing an output view

To draw an output view in a given place it is enough to click on the corresponding
button and then at the place where to put the output view, or to right click at
the desired place to show up the same toolbar as a popu menu. A new dialog
is opened as illustrated in the �gure 6.14.

This dialog is composed of two parts:

� the upper part lists all the output views available in the selected control
panel. Selecting one of these and typing either return or pushing the
Existing button shall draw the corresponding output view at the selected
place.

� the down part is used to create a new output view with a drop down menu
from which to select one of the output view de�ned in the concrete model
graph panel (see 6.3).

6.4.2 Deleting an output view

An output view can be deleted by selecting it and selectingRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output view must be removed fromthe control
panel:

� if yes, the output view is removed both from the drawing and the list of
output views de�ned for the control panel;

� otherwise, only the drawing is removed but the output view remains un-
changed.

6.4.3 Drawing a parameter editor

To draw a parameter editor in a given place it is enough to click on the corre-
sponding button and then at the place where to put the parameter editor or to
right click at the desired place to show up the same toolbar asa popu menu. A
new dialog is opened as illustrated in the �gure 6.11.

This dialog is composed of two parts:

CHAPTER 6. THE CONCRETE MODEL EDITOR 50

Figure 6.15: The creation dialog for a parameter editor.

� the upper part lists all the parameter editors available in the selected
control panel. Selecting one of these and typing either return or pushing
the Existing button shall draw the corresponding parameter editor at
the selected place.

� the down part is used to create a new parameter editor with twodrop
down menus:

� the �rst one is for selecting one of the individuals created in the
concrete model panel (see 6.1.1);

� the second one is for selecting one of the attribute to edit ofthe
individual.

6.4.4 Deleting a parameter editor

A parameter editor can be deleted by selecting it and selecting Remove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the parameter editor must be removed from the
model:

� if yes, the parameter editor is removed both from the drawingand the list
of parameter editors de�ned for the model;

� otherwise, only the drawing is removed but the parameter editor remains
unchanged.

Chapter 7

Some examples

7.1 The rolling ball example

As an example, we shall model a simple system composed of one rolling ball and
a kicker. This example allows the illustration of a combination of continuous
and discrete time:

� the rolling ball is submitted to uniform movement described by the fol-
lowing equations:

x(t) = x0 + vx � t ; y(t) = y0 + vy � t

� at random time, the kicker computes a random two-dimensional vector
< k x ; ky > which is sent to the ball to change its trajectory in the following
way:

vx = vx + kx ; vy = vy + ky

7.1.1 De�ning the conceptual model

The conceptual model will be composed of two categories:RollingBall and
Kicker . The RollingBall is characterized by four attributes: two f or the initial
position (x0 and y0 corresponding tox0 and y0) and two for the speed (vx and
vy corresponding to vx and vy). The Kicker is characterized by one attribute:
the seed of its random generator used for the time of kicking the ball and the
generation of the random vector1.

If we want to visualize the position of the ball, the event-based nature of the
simulation will only be able to provide state changes when the ball is kicked.
To see the ball rolling between two successive kicks, we haveto sample the
trajectory. In order to do that, a third category is added to t he model to
sample the trajectory by asking at each �xed time step to the ball its position.
The resulting ontology in shown in �gure 7.1.

In addition, you have the de�nition of three relations:

� kicked which a relation of Kicker to send a kick to aRollingBall . Note
that a Kicker can kick simultaneously any number of balls.

1To put the seed as a parameter is recommended if one wants to co ntrol the outcome of
the simulation, i.e. to produce exactly the same result for e ach simulation.

51

CHAPTER 7. SOME EXAMPLES 52

Figure 7.1: The conceptual model for a kicked and observed rolling ball.

Figure 7.2: The conceptual model for a rolling ball with the attribute panel.

� observer which is a port of RollingBall to send its position to an ob-
server (and it can have as many observers as it wants).

� observed which is a port of Observer to send a request for position (it
will always be a logical in�uence, of course).

The parameters can be edited (added, changed or removed) through the
category editor as shown in the �gure 7.2.

The relations (i.e. the de�nition of the relation name, card inality and type)
can be either drawn through the graphical editor or entered in the category
editor dialog as in �gure 7.3. If the relation are de�ned by th e category editor,
they will not show up in the graphical editor. They can be visualized by drawing
an arc and specifying an existing link as shown in �gure 7.4.

At that stage, the structure of the conceptual model (i.e. the ontology) is
entirely de�ned: the categories, attributes and relations.

7.2 De�ning the dynamics

For de�ning the behavior, you have to de�ne:

� the incoming and outgoing in�uences;

CHAPTER 7. SOME EXAMPLES 53

Figure 7.3: The rolling ball category with the relations panel.

Figure 7.4: De�nition of an arc from an existing relation de� nition

CHAPTER 7. SOME EXAMPLES 54

Figure 7.5: The rolling ball category with the probes panel

� the probes;

� the M-DEVS functions.

We assume thatRollingBall receives kicks and observation requests and sends
positions, Kicker sends kicks and the Observer sends observation requests and
receives positions. The checking of the consistency between what is sent or
received is currently very loose but can be reinforced by selecting the �verify�
check-bon in the scheduler. In a future release the possibility to check for
model consistency when de�ning the conceptual model will beenforced (at least
optionally).

We shall de�ne two identical probes: one for theRollingBall to signal the
state change (new x0, y0, vx and vy, see �gure 7.5) and one for the Observer
for the ball position, each time it receives the actual coordinates.

These declarative parts of the dynamics being made, we have to focus on
specifying each of the function of the corresponding M-DEVSmodel. The �gure
7.6 shows how to de�ne the initialization of the rolling ball . In the shown panel,
the LanguageState behavior has been selected, which allows to specify the
behavior with script languages. In this case, the Java scripting language has
been selected (JavaInterpreter).

Note that we distinguish the attributes and the state of the model. The at-
tributes de�ne the structure of the ball for an external observer and corresponds
semantically to the speci�cation of its initial state. The s tate itself changes con-
tinuously, spontaneously or in response to incoming in�uences. In this case the
state is created and initialized from the parameters.

The �gure 7.7 shows the code for handling incoming external in�uences.
The principle is to loop through the set of in�uences (put in t he variable
externalInfluences), to check its type for each one and compute the state
change accordingly. Note that after the state change, a probe value is issued to
update all the possible visualization windows.

CHAPTER 7. SOME EXAMPLES 55

Figure 7.6: The rolling ball category with the initialize pa nel

The user is asked to further explore the model which is available as an
example, to see how the behaviors are de�ned in the various scripting languages.

7.2.1 De�ning the concrete model

As said before, the de�nition of the structure and dynamics is part of the concep-
tual model and cannot be run directly. From the conceptual model, a concrete
and simulatable model can be instantiated. You have to open aconcrete model
editor. At the top of the right panel, you have a list of conceptual models you
can take your de�nitions from. The �gure 7.8 shows a window in which a model
has been built by creating an instance of each of the categories (an instance of
clock has been added to de�ne the time rate at which the observer samples the
rolling ball). In this �gure, each port is linked to the prope r entity. The drawing
panel uses a modi�ed UML object diagram. The links are named (which is not
the case in UML). As in UML, the name of the instances is optional and for
documentation purpose only.

The actual structure of an individual is not only composed by its links but
also by the values of its attributes (interpreted as the speci�cation of the initial
state of the simulation). By editing an individual, the dial og of the �gure 7.9
appears where you can change the name of the individual (optional), trace or
untrace the individual 2, de�ne or change the attribute values.

2while tracing in the scheduler traces the posted and sent in� uences, tracing an individual
traces the call to the M-DEVS functions.

CHAPTER 7. SOME EXAMPLES 56

Figure 7.7: The rolling ball category with the external tran sition panel

Figure 7.8: The concrete model as an instance of the conceptual model.

CHAPTER 7. SOME EXAMPLES 57

Figure 7.9: The edition dialog for an individual.

Figure 7.10: The view on the rolling ball state

Once all the model has been instantiated and all the parameters de�ned (a
further version should also check for the model completeness), the user can open
the scheduler, select the model to run, initialize and run it, either step by step
or in a single run until the end date is reached as described inmore details in
the chapter 8.

In addition, a visualization window can be opened. For example, a pos-
sible view looks like the �gure 7.10 and is updated each time the individuals
change3. The top left panel displays the clock value, the top right panel displays
�KICKED� for some time each time the kicker is issuing a kick, the bottom left
panel displays the rolling ball state (updated only when kicked) and the bottom
right panel displays the actual position of the ball at each time step.

Such a display cannot be created interactively yet. A numberof visualiza-
tion items can be created, positioned within a control boardand linked to the
individuals receiving its probes and using them to update the visualization. An
editor for such a control panel (including the possibility to change the parame-
ters shall be available in a near future.

7.3 The stupid model

Coming soon.

3Sorry if we did not program a panel to visualize trajectories yet.

Chapter 8

The scheduler

This chapter is really about running simulations. The concrete models one
wants to run are available from the drop down menu on the top ofthe scheduler
window (see 8.1). All the models de�ned in the concrete modeleditor are shown
in this drop down menu to select from. Additionally, �les can be loaded within
the scheduler if saved in the scheduler format from the concrete model editor.
This possibility is o�ered to deliver turn key models to be run independently of
all the previously described editors.

A concrete model has to be selected from the list on the left. The initialize
button shall actually generate the simulation model out of the concrete model
description. The �rst step shall initialize the simulation model (the time shall
remain at 0). Further steps shall advance the time dependingon the closest
scheduled next date.

In the scheduler menu, the �rst item opens an inspector to visualize the list
of all created entities (see 8.2). This list is updated during the simulation to
re�ect the current list of entities. Clicking on an entity op ens an entity inspector
to monitor what is going on in the given entity (see �gure 8.3). The panel is
divided in four panes:

� the �rst pane lists the current parameters of the entity and t heir values;

� the second pane is the list of current ports with the list of entities their
are associated to;

� the third pane is used for managing the probe observers;

� �nally the fourth pane displays the warning messages when necessary.

Figure 8.1: The scheduler window.

58

CHAPTER 8. THE SCHEDULER 59

Figure 8.2: The main inspector window.

The most important pane certainly is the third pane because it monitors
what is going on inside of the inspected entity. It is composed of a drop-down
menu for selecting a probe observer and a panel to display theprobe observer
when it is displayable. By default, two probe observers are available:

� the probe view which displays the probes when received one after the
other. A button to clear the display is available if necessary;

� the probe output which send the probes to a �le. When selecting the
probe observer, a �le name as well as a separator string is asked. The
resulting �le can be loaded in excel or any similar tool.

At each time step it is possible to open a window showing the structure of
the simulated model as a graph where each node is an entity andeach edge is
a connection between the entities. The corresponding window is shown in the
�gure 8.4 and is made of three parts:

� The upper part is a drop down menu to select the kind of graph manipu-
lation: either transforming for changing the place of the graph, zoom it in
or out, etc., or picking for selecting one node and move it on the screen;

� The graph itself;

� A button to switch between two algorithms to layout the graph . Choose
the one which seems more appropriate to visualize the model.

CHAPTER 8. THE SCHEDULER 60

Figure 8.3: The entity inspector window.

CHAPTER 8. THE SCHEDULER 61

Figure 8.4: The graph of the simulated model.

Appendix A

Introduction to Scheme

Scheme is a functional language close to Lisp but with a purersemantics.
Roughly speaking only two constructs are provided in scheme:

� the function (called procedure in the Scheme community) written: (lambda
<parameters> <body>) where parameters is a list of parameter names
and body is a sequence of expressions.

� the application written (<function> <arg 1>: : :<argn >) where function
is a function as de�ned before andarg i are expressions.

Of course, anexpressionis either a function or an application. This seems overly
simplistic but it has been shown that it is enough to express any computation
one could dream of. Nevertheless, the resulting syntax would become unreadable
for any reasonable computation. The simplest way to overcome this problem
is to provide the possibility to associate names to expressions with the form:
(define <name> <expressions>) . A number of names have been prede�ned
in Scheme for all the current arithmetic operations as well as the operations on
very common data structures.

By the way, define is not a function name but the name of a syntactic
form which is transformed behind the scene in a proper application. The set
of possible syntactic forms can itself be extended, parameterizing the Scheme
interpreter with high level constructs at will (not explain ed in this introduction).

A structure or object is also called a literal expression is of the form:(quote
<something>) or (alternatively) '<something> . The something is either:

� a number

� #t and #f

� a character #n..

� a string "..."

� a symbol

� a pair (<something 1> . <something n>) or a list (<something 1>: : :<somethingn>)

� a vector #(<something 1>: : :<somethingn>)

62

APPENDIX A. INTRODUCTION TO SCHEME 63

The �rst four categories do not need the quote because they self-evaluate, i.e.
their value is themselves.

Finally, an additional power is acquired by the relationships between struc-
tures (or objects) and expressions. Of course, expressionstransform structures
into structures (it is what functions or all about). The nice thing is that (eval
<exp>) transforms the structure produced by the expression into anexpres-
sion...and computes its value as well. Therefore, one can write programs pro-
ducing programs which are further executed.

This appendix is not suppose to give a full course on Scheme but just pro-
vide a summary of the most common de�nitions for reference, including the
de�nitions introduced for use within Mimosa.

A.1 Control syntax

As in any language, there are some constructs for the usual control structures:
the sequence, the conditional and the loop.

(define <symbol> <exp>) the de�nition
(set! <symbol> <exp>) to change the de�nition
(begin <exp 1>: : :<expn >) the sequence of expressions
(if <exp> <exp true > <expfalse >) the conditional
(cond (<exp 1> : : :) : : :(else : : :)) the multiple contitional
(or <exp 1>: : :<expn >) sequence until true
(and <exp1>: : :<expn >) sequence until false

The loop is more complicated with the form(do (<iter 1>: : :<iter n >) (<cond>
: : :) : : :) where iter i is a variable of iteration of the form (<var i > <expinit >
<expstep >) with a variable name, an initialization expression and a step com-
putation expression, the condition expression must be truefor stopping the
iteration and the corresponding expressions are computed accordingly.

Finally, one must introduce the binding construct to create local variables
for various purposes:

(let ((<sym 1> <exp1>) : : :) <exp i >: : :) parallel binding
(let* ((<sym 1> <exp1>) : : :) <exp i >: : :) sequential binding
(letrec ((<sym 1> <exp1>) : : :) <exp i >: : :) complete binding

The main di�erence is that the association of values to symbols are avalaible
from the body alone in the �rst case, directly after the de�ni tion (and then for
the next de�nitions) in the second case and from the start in the third (allowing
self reference).

A.2 Booleans

There are two booleans #t and #f which are two symbols which evaluates to
themselves. Apart from and and or , we also have the following functions:

(boolean? <exp>) tests if boolean
(not <exp>) the negation
(eq? <exp1> <exp2>) strict equality
(eqv? <exp1> <exp2>) slight extension of strict equality
(equal? <exp 1> <exp2>) recursive (or structural) equality

APPENDIX A. INTRODUCTION TO SCHEME 64

A.3 Numbers

Scheme recognizes the integers (e.g. 51236457), rationals(e.g. 6235645/23672573),
reals (e.g. 4.6565e-3) and complex numbers (e.g. 3+5i). Themain distinction
is between exact and inexact representations of these. The prede�ned functions
are:

(number? <exp>) tests if number
(complex? <exp>) tests if complex
(real? <exp>) tests if real
(rational? <exp>) tests if rational
(integer? <exp>) tests if integer
(exact? <exp>) tests if exact
(inexact? <exp>) tests if inexact
(zero? <exp>) tests if zero
(positive? <exp>) tests if positive
(negative? <exp>) tests if negative
(odd? <exp>) tests if odd
(even? <exp>) tests if even
(= x1 : : :) equality
(< x1 : : :) monotonically increasing
(> x1 : : :) monotonically decreasing
(<= x1 : : :) monotonically non decreasing
(>= x1 : : :) monotonically non increasing
(abs x) the absolute value of the number
(min x1 : : :) the min of the numbers
(max x1 : : :) the max of the numbers
(+ z1 : : :) the sum of the numbers
(- z1 : : :) the di�erence of the numbers
(* z1 : : :) the product of the numbers
(/ z1 : : :) the quotient of the numbers
(quotient n1 n2) the quotient of the numbers
(remainder n1 n2) the remainder of the numbers
(modulo n1 n2) the modulo of the numbers
(gcd n1 : : :) the greatest common divisor of the numbers
(lcm n1 : : :) the lowest common multiple of the numbers
(numerator q) the numerator of the rational
(denominator q) the denominator of the rational
(floor x) the �oor of the real
(ceiling x) the ceiling of the real
(truncate x) the truncate of the real
(round x) the round of the real
(real-part z) the real part of the complex
(imag-part z) the imaginary part of the complex

As well as most transcendant functions.

A.4 Dotted pairs and lists

The most common data structure in Scheme is the dotted pair written (<left>
. <right>) . A list (<elt 1> <elt 2> : : : <elt n >) is nothing but (<elt 1> .

APPENDIX A. INTRODUCTION TO SCHEME 65

(<elt 2> . : : : (<elt n > . ()) : : :) where () is the empty list. We have the
following functions:

(pair? <exp>) tests if dotted pair
(null? <exp>) tests if empty list
(list? <exp>) tests if empty list or dotted pair
(car <exp>) left of dotted pair or �rst element of list
(cdr <exp>) right of dotted pair or rest of list
(set-car! <pair> <obj>) modi�es left of dotted pair
(set-cdr! <pair> <obj>) modi�es right of dotted pair
(list <obj 1> : : : <obj n >) creates a list
(length <list>) length of a list
(reverse <list>) reverse of a list
(list-tail <list> <k>) the k-th rest of a list
(list-ref <list> <k>) the k-th element of a list
(append <list 1> : : : <list n >) append of lists
(memq <object> <list>) member using eq?
(memv <object> <list>) member using eqv?
(member <object> <list>) member using equal?

An additional structure is the so-called a-list which is a list of pairs whosecar is
considered as a key and thecdr as the associated value. The related functions
are:

(assq <object> <list>) has key using eq?
(assv <object> <list>) has key using eqv?
(assoc <object> <list>) has key using equal?

and returns the found pair if any, #f otherwise.

A.5 Mimosa primitives

For Mimosa, we added three very common control structures for better read-
ability:

(when <cond> <exp1>: : :<expn >) executes if #t
(unless <cond> <exp 1>: : :<expn >) executes if #f
(for (<var> <list>) <exp 1>: : :<expn >) a simple loop over a list
(times (<var> <nb>) <exp 1>: : :<expn >) a simpler loop repeated nb times

Some functions are provided to access the Mimosa random generator:
(newRandom <seed>) creates a random generator
(nextBoolean <random>) generates a boolean randomly
(nextInt <random> <n>) generates an integer from 0 to n
(nextDouble <random>) generates a real from 0 to 1

Finally, the access to the DEVS entity functionalities are provided as follows:

� the variable self is linked to the current Java state;

� for each parameter, the variable with the same name is de�nedwith the
associated value within the global context. It can additionally be accessed
through the function (getParameter <sym>) ;

� when a script for a DEVS function is called, the global variable time is
linked to the duration elapsed since the last internal or external transition;

APPENDIX A. INTRODUCTION TO SCHEME 66

� each in�uence is a Java object whose structure can be accessed by the
following functions:

(is <influence> <name>) #t if the in�uence has the given name
(contentOf <influence>) the list of arguments
(getAllInfluences) the list of incoming in�uences
(getInfluence <name>) the list of in�uences of the given name
(getInternalInfluence) the internal in�uence

� the various events can be posted with the following functions:

(port <sym> n1 : : : nn) creates a port
(sendExternal <port> <sym> <exp 1>: : :<expn >) post an external event
(sendInternal n <sym> <exp1>: : :<expn >) post an internal event
(sendLogical <port> <sym> <exp 1>: : :<expn >) post a logical event
(reply <influence> <sym> <exp 1>: : :<expn >) reply to an in�uence
(sendProbe <sym> <exp1>: : :<expn >) post a probe

A port can be a string or a symbol when there is no indices.

Finally the structure changes can be made through the following functions:
(portRef <port 1>: : :<port n >) creates a port reference
(pair <sym> <exp>) creates a pair for the parameters
(parameters <pair 1>: : :<pair n >) creates parameters from the pairs
(addPort <portref> <category> <traced> <parameters>) creates a new entity
(linkPort <portref 1> <portref 2>) links referenced ports
(removePort <portref>) removes a references port

Bibliography

[1] http://bergel.eu/athena/.

[2] http://herzberg.ca.sandia.gov/jess/.

[3] http://jscheme.sourceforge.net/.

[4] http://www.alice.unibo.it:8080/tuprolog/.

[5] http://www.beanshell.org/.

[6] http://www.gnu.org/software/kawa/.

[7] http://www.jython.org/.

[8] Jacques Ferber and Jean-Pierre Müller. In�uences and reaction: a model
of situated multiagent systems. In Mario Tokoro, editor, Proceedings of
2nd International Conference on Multi-Agent Systems, pages 72�79, Kyoto,
Japan, December 1996. AAAI.

[9] Jean-Pierre Müller. The mimosa generic modeling and simulatiion plat-
form: the case of multi-agent systems. In Herder Coelho and Bernard
Espinasse, editors,5th Workshop on Agent-Based Simulation, pages 77�86,
Lisbon, Portugal, May 2004. SCS.

[10] Jean-Pierre Müller. Mimosa: using ontologies for modelling and simulation.
In Proceedings of Informatik 2007, Lecture Notes in Informatik, September
2007.

[11] Jean-Pierre Müller. Towards a formal semantics of event-based multiagent
simulations. In Proceedings of the Multi-Agent Based Simulation Workshop,
Estoril, Portugal, May 2008.

[12] Jean-Pierre Müller and Pierre Bommel.An introduction to UML for mod-
eling in the human and social sciences, volume Agent-based Modelling and
Simulation in the Social and Human Sciences, chapter 12. Bardwell Press,
2007.

[13] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer.Theory of Mod-
eling and Simulation. Academic Press, 2000.

67

