MIMOSA user's manual
(Draft version 1.2.3beta)

Jean-Pierre Millet
CIRAD-ES-GREEN
jean-pierre.muller@cirad.fr

August 25, 2008

! Associated researcher to LIRMM

Contents

1 Introduction

2 Running Mimosa

2.1
2.2
2.3
2.4
2.5

Downloading Mimosa
Launching Mimosa
Themenus
The editor windows
The schedulerwindow

3 The ontologies

3.1
3.2
3.3
3.4
35

Individuals

Categories e
Relations

4 The conceptual model editor

4.1
4.2

4.3

The editor
Category edition
421 Drawingacategory. v v v v i
422 Editngacategory
4.2.3 Deletingacategory.
Relation edition
4.3.1 Drawingarelation
432 Editingarelaton.
4.3.3 Deletingarelation

5 The dynamics

51
5.2

53

Introduction

The operational semantics
521 Themodel
522 Theports
5.2.3 Theinuences
5.24 Theprobes
525 Thetime
The behavior specication
5.3.1 Programmatic specication
5.3.2 Scripted specication. L.

CONTENTS

6.1

6.2

6.3

6.4

7 Some examples

7.1

7.2

7.3

8 The scheduler

Al
A2
A3
A4

533 Statecharts oL
5.3.4 Furtherextensions
6 The concrete model editor
Individual edition
6.1.1 Drawing anindividual
6.1.2 Editing anindividual
6.1.3 Deleting an individual
Link edition
6.2.1 Drawingalink
6.2.2 Deletingalink
Output specication
6.3.1 Drawinganoutput,
6.3.2 Editnganoutput 0.
6.3.3 Deletinganoutput
6.3.4 Drawinganoutputedge
6.3.5 Deletinganoutputedge
Control panel denition
6.4.1 Drawinganoutputview
6.4.2 Deleting an outputview oL
6.4.3 Drawing a parameter editor
6.4.4 Deleting a parametereditor
The rolling ballexample
7.1.1 De ning the conceptual model
De ning the dynamics
7.2.1 Dening the concrete model
The stupid model
A Introduction to Scheme
Control syntax
Booleans.
Numbers
Dotted pairsand lists

A5

Mimosa primitives

40
41
41
42
42
43
43
43
44
44
44
46
47
47

49

49

49
50

51
51
51

52
55
57

58

List of Figures

2.1 The welcomewindow 8
2.2 The conceptual model editor as an example of an editor wolow 10
2.3 The category list editor of ontologies 11
2.4 The graphical editor buttons 11
2.5 The schedulerwindow 12
3.1 Farmer and plot individuals. 14
3.2 Farmersowningplots. 14
3.3 The description of the plotp2. 15
3.4 A category hierarchy of plots and people 15
3.5 A category hierarchy of plots and people with a relationkip . . . 16
4.1 The buttons of the ontology editor. 18
4.2 An annotated category.o 19
4.3 The creation dialog for a category. 9
4.4 The category graphical form. 20
4.5 The category editor with the attribute panel. 21
4.6 The category editor with the inherited attributes. 21
4.7 The creation dialog for a relation. 21
4.8 The example ofarelation. 22
4.9 Therelationsofacategory. 22
5.1 The behavior panel of the category. 3
5.2 The behavior panel of a simple object. 8
6.1 The buttons of the model editor. 41
6.2 The creation dialog for an individual. 42
6.3 The individual graphical form. 42
6.4 The individual editor with the attribute panel. 43
6.5 The creation dialog foralink. 43
6.6 The exampleoflinks.. 44
6.7 A concrete model with an output specication. 45
6.8 The creation dialog for an output. 45
6.9 The output graphical form. 45
6.10 The output editor with an attribute panel.. 46
6.11 The creation dialog for an outputedge. 47
6.12 The control panel toolbar. a7
6.13 The control panel view., 48

LIST OF FIGURES 4

6.14
6.15

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4

The creation dialog for an output view. 49
The creation dialog for a parameter editor. 50
The conceptual model for a kicked and observed rolling dh. . . 52
The conceptual model for a rolling ball with the attribut e panel. 52
The rolling ball category with the relations panel. 53
De nition of an arc from an existing relation de nition 53
The rolling ball category with the probes panel 54
The rolling ball category with the initialize panel 55
The rolling ball category with the external transition panel . .. 56
The concrete model as an instance of the conceptual model . . 56
The edition dialog for an individual. 57
The view on the rolling ball state 5
The scheduler window. 58
The main inspector window. 59
The entity inspector window. 60
The graph of the simulated model. 61

Chapter 1

Introduction

Mimosa! is an extensible modeling and simulation platform ([9]). It is aiming
at supporting the whole modeling and simulation process frm the conceptual
model up to the running simulations.

The modeling process is assumed to be constituted iterativg of the following
stages:

The conceptual modeling stage: it consists in elaborating the ontology of
the domain as a set of categories, their attributes and theirrelationships,
either taxonomic or semantical.

The dynamical modeling stage: in order to describe the dynamics of the
categories de ned in the rst phase, one must decide on the chice of
paradigm (di erential equations, straight scripting, age nt-based, etc.) for
each category. The paradigm is described using a built-in nt@-ontology.
Given the choice of dynamical paradigm, one must specify theossible
states and state changes according to the chosen paradigm.

the concrete modeling stage: the previously described stages de ne the vo-
cabulary in which the concrete model(s) can be described as set of indi-
viduals linked to each other and with given attribute values.

the simulation speci cation stage: apart from the structure of the model
to simulate as described in the previous stage, an importantvork consists
in deciding which attributes can be considered as xed paraneters, which
ones can be manipulated by the user, how to output the states fothe
model (plots, grids, databases, statistical tools, etc.)

the simulation stage: it consists in running the simulations themselves by
creating the simulation model to run as a set of entities linked through
ports by connections, by associating the means to specify # input pa-
rameters and to handle the outputs of the simulations and by atually
simulating it.

In the following, we shall describe these stages in turn. Bubefore, we shall
shortly introduce how to run the system.

it is the french acronym for Méthodes Informatiques de MOdé lisation et Simulation
Agents : computer science methods for agent-based modelin g and simulation

CHAPTER 1. INTRODUCTION 6

Mimosa is also implemented to be multi-lingual. For the time being only
english and french are provided; spanish is coming soon. Thaser's manual is

only in english. Most of the explanations still apply even ifthe menus and titles
are not the same.

Chapter 2

Running Mimosa

2.1 Downloading Mimosa

Mimosa is a free software under LGPL license and CIRAD copyight. The
source and code is available on SourceForge.

If you are only interested in the program itself, you can go tothe Mimosa
site on SourceForge: http://sourceforge.net/projects/mimosa . You just
have to follow the link dowload to go to the page where you ca download the
software. How to run it is explained in the next section.

If you are interested by the software itself (or even want to ©ntribute), feel
free to access it via the CVS server at:

pserver:anonymous@mimosa.cvs.sourceforge.net/cvsroo t/mimosa.

The latest version is currently under the branch: version2006-04-19 . The
tagged versionsversionl0lbeta and versionllObeta can be dowloaded but,
of course, are not fully up to date. If you want to be a develope, just create an
account on SourceForge and send a message to:

jean-pierre.muller@cirad.fr
to give the name of your account and to explain what you want todo.

2.2 Launching Mimosa

Mimosa is written in Java 1.5 and can be run on any platform (bah hardware
and operating system) as long as at least Java JRE 1.5 is insted.
For the time being, Mimosa is provided as a folder containing

mimosa.jar which is the main program to be launched by typing java
-jar mimosa.jar or by double-clicking on it if your OS has Java inte-
grated in it.

alibs folder containing the libraries necessary for running Mimea.

an example folder containing some examples to load within Mimosa for
exploring its functionalities.

a documentation folder for the documentation (it should be soon or later
a user's manual (this one), a programmer's manual and the fuljavadoc
hierarchy).

CHAPTER 2. RUNNING MIMOSA 8

MIMOSA

BIENVENUE DANS MIMOSA

Choisir votre langue:

O] francais

O anglais
OK

Figure 2.1: The welcome window

aplugins folder contains so-called plugins which are either hard-cded ex-
amples or additional dynamical speci cation paradigms. Maost of Mimosa
is assumed to be sooner or later distributed in this form.

When launching Mimosa, a rst window is opened to choose youlanguage
(see gure 2.1). The window shall appear in your operating sgtem language as
well as the choice by default. However, depending with whom gu are working,
any other available language can be selected. Thereafter, window with an
editor for conceptual modeling appears (see 3). The next séon describes the
menus in detail.

2.3 The menus

Four menus are provided:

File: this menu provides access to all the functionalities relatd to the window
which is active or to open new windows:

New: is used to open any of the following new windows:

Conceptual model editor: opens a window for editing concep-
tual models;
Mereology editor: opens a window for editing more sophisticated

conceptual models (in particular with whole/part relation ships,
what mereology is all about!). Currently, it is not yet fully op-
erational;

Concrete model editor: opens a window for editing concrete mod-
els (as instances of conceptual models);

Scheduler: opens a scheduler control window for running the sim-
ulation models.

Open...: loads the content of a le depending of the selected window.
The le must contain an appropriate XML representation. The kind
of content which can be loaded depends on the active window. fl
it is a conceptual model editor, only a saved conceptual modecan
be loaded. If it is a mereology window, only a saved mereologal or
above model can be loaded. If it is a concrete model editor, dy a
saved concrete model can be loaded. In the last case, be sureat
the conceptual models used by the concrete model have beeralbed
beforehand. Finally, if it is a scheduler window, only the XML les

CHAPTER 2. RUNNING MIMOSA 9

especially generated from the concrete model editor for ths purpose
can be loaded.

Save: saves the model currently edited in the active window in the &so-
ciated le (the last le it was saved to). If it was never saved before,
a le chooser dialog opens.

Save as.... saves the model currently edited in the active window in a le
to specify regardless of the last save (or open).

Save as image.... saves the displayed graph (if any) as a picture in a
number of proposed formats.

Print...: prints the content of the current window if applicable (it is ap-
plicable when a graph is displayed).

Restore...: this item is only used if you de ned a new meta-ontology in
a so-called plugin and you want to dynamically reload the plgins
de nitions for further use without relaunching Mimosa.

Edit: this menu provides the contextual editing functionalities provided for
the selected window or object. Any editor provides at least he following
functionalities in addition to the usual cut, copy and paste:

Add: to add a new object (categories, individuals, states, etc;)

Change: to change the name of an object when there is an associated
name;

Edit: to edit the structure of an object (the structure depends on the
object and, sometimes, includes the associated behavior geription);

Delete: to remove the selected object(s);
Delete all: to remove all the de ned objects.

Window: this menu provides quick access to the opened windows. One tifese
is always accessible even if not shown by default:

Output: to display the output window which is a console containing: a
panel for user speci c output, a panel where error are displged and
a panel where the traces are displayed.

Help: this menu gives access to a number of tools for debugging:

Statistics: displays in the output window some statistics about the data
structures used by the scheduler: number of created entitie and
usage of the in uences;

Prede nitions: displays in the output window the prede nitions as de-
ned in the scripting mechanism;

Show content: displays in the output window the content of the tables
created by the various editors which are the data structuresbehind
the scenes;

Script interpreter: displays a window in which the user can enter ex-
pressions in any of the provided scripting languages in ordeto test
the code. The results are displayed in the output window wherpush-
ing the eval button.

1This possibility is provided to create stand-alone models w ithout the associated conceptual
models.

CHAPTER 2. RUNNING MIMOSA 10

Ontologie: example{example.xml)

| Defaultontology [Graphe Catégories _Types d'influences |

SRE . B Ny]

clocked
example.Clock |- example.EntityType
<<NativeState>> <<NativeState>>
\ﬁﬁ

lexample.PythonClock
>

example.HardClock

example.JavaClock
L > <<Clock>>

<

example.SchemeClock
>

example.RollingBall
example.Kicked <<Nativestate>> |observer

< <NativeState> > |kicked Observer
5 w <<NativeState>>

seed i

T v

\ \ fikamaany | |

e i
‘<<Languageilale>> ‘ P

lexample. Pythonki J
<<Agent>> ‘

example.HardKicker
<<Kicker>>

ampl
‘ <<Observer>>

example.JavaKicker example.SchemeKicker
> L

tate>>

seed

ampl
<<languagestate>>

example.
<<l 5!

example
<<languageState>

example.
<

yo
vx

X0

Figure 2.2: The conceptual model editor as an example of an &dr window

2.4 The editor windows

Each editor window has the same structure (see the gure 2.2) It is divided in
two vertical panels.

The left panel contains the list of existing models (either @nceptual or con-
crete) referenced by their names. In Mimosa, these models aralso referred to
as ontologies. One can select an existing model (in the modeHitor) or ontology
(in the ontology editor) by left-clicking on its name. By rig ht-clicking on the
panel, one accesses a popup menu where it is possible to add ewnontology,
change its name or delete it. It is highly recommended to cre a new ontol-
ogy each time one is describing a di erent structure for moduarity and reuse
reasons.

The right panel is editor specic and usually allows multiple views of the
same ontology or parts of it. In most cases a graphical view igrovided. In the
gure 2.2, there are three editor panels. The shown one is theraphical editor
panel. The other two are used to edit categories and in uencdypes (see 5.2.3)
as lists. The gure 2.3 shows the list editor where it is also mssible to add,
change the name, edit and remove categories.

On the top of any drawing view, there is a toolbar with a number of model
speci ¢ buttons. These buttons are speci ¢ and shall be desgbed in the related
chapters. These editing buttons are also available as a pogumenu when right-
clicking in the drawing area. The last button is a drop down menu to manipulate
the editor window (zooming in and out, reducing, enlarging a hidding/showing
the grid for objects alignment). The gure 2.4 shows the buttons for editing

CHAPTER 2. RUNNING MIMOSA 11

Ontologie: example(example. xml)

DefaultOntology | Graphe Catégories Types d'influences |
[example

SchemeObserver

PythonKicker

JavaClock

Kicked
SchemeClock
Observer
JavaRollingBall
EntityType
HardKicker
JavaObserver
RollingBall
JavaKicker
HardClack
Clock

. SchemeRollingBall
SchemeKicker
HardRollingBall
PythonRollingBall
PythonObserver
HardObserver
PythonClock

(= mXiC

Figure 2.3: The category list editor of ontologies

11D BBy W N Ty e

Figure 2.4: The graphical editor buttons

mereological conceptual models.

Any created object can be edited by double-clicking on it. Onright-clicking
on an object, one can access a popup menu for editing (same asuble-clicking)
or deleting the object.

2.5 The scheduler window

On the top of the scheduler window (see 2.5), the list of exisghg models is
provided for inclusion within the list of available models to the scheduler. It
is also possible to add additional models to simulate by loathg them from
scheduler speci ¢ les. This possibility is used when deliering turn key models.

The bottom of the scheduler window is divided in two vertical panels.

In the left panel, there is the list of existing models (as adeéd from the model
editor or from les). Exactly one model must be selected to berun.

The right panel is divided in three horizontal panels:

1. the top panel has two check boxes for debugging:

Trace: toturntracing onando. Ifthe traceis on, the in uences pos ted
and sent are displayed in the trace window.

CHAPTER 2. RUNNING MIMOSA 12

Scheduler (0)

Add concrete model: DefaultModel s

[Defauitmadel Scheduler
™1 Tracing [| Checking (m\
State Current date Stop date
UNKNOWN 0 0

(Rese(Y (initialize) I(Run \ f Step bR ¢ Stop

Figure 2.5: The scheduler window

Verify: to turn verifying on and o . If the verify is on, all the declar a-
tions (names, types and cardinality) are checked during simlation.
It slows down the simulation quite a bit but it is very useful for
checking whether the behavior is consistent with the declaations.

as well as a button to visualize the simulated structure as a gaph. Cur-
rently, the graph is not updated while running the simulation. Therefore,
the button has to be pushed each time, one wants to visualizehte current
state (to be improved later on).

2. the middle panel displays the state of the simulation (unknown, initialized,
running or stopped) and the current date (in global time). An end date
can be entered to specify when to stop the simulation. The car simulation
system being event-based, this is NOT a number of steps but aly an
end date.

3. the bottom panel has buttons for controlling the simulation:

Reset: for creating the simulation model and control panel out of its
description (either le or concrete model).

Initialize: for putting the model in its initial state. The current date
becomes always 0.

Run: to run the simulation until the provided end date is reached. If the
end date is les or equal to the current date, nothing happens.

Step: to run one cycle of the simulation. All the in uences schedukd at
the next date are executed.

Stop: to stop the simulation before the end date is reached. The cuent
cycle is always completed (and cannot be interrupted).

Each scheduler window is associated to its own thread, so the is a pos-
sibility of having several scheduler window opened to run seeral simulations
simultaneously.

Chapter 3

The ontologies

In modeling and simulation, the structure is often understood as a composition
of models, each model computing a function to produce outpig (outgoing events
or values) from inputs (incoming events or values). Of cours, this composition
re ects the structure of the system one wants to model but no dscourse on how
to describe a system structure is explicitly given. On the oher hand, Arti cial
Intelligence has focused part of its theories on how peopleescribe the reality.
This part of Arti cial Intelligence evolved, partly under t he pressure of the web
developments (both about its contents and its services), ito what is called today
the description of ontologies.

The term ontology has its origin in philosophy, where it is the name of a
fundamental branch of metaphysics concerned with existere. According to
Tom Gruber at Stanford University, the meaning of ontology in the context of
computer science, however, is a description of the conceptand relationships
that can exist for an agent or a community of agents. He goesmto specify that
an ontology is generally written, as a set of de nitions of formal vocabulary .

Contemporary ontologies share many structural similarities, regardless of
the language in which they are expressed. Most ontologies deribe individuals,
categories, attributes, and relations. In this section eah of these components is
discussed in turn as well as the related Mimosa speci cation More descriptions
can be found in [10, 12].

3.1 Individuals

Individuals are the basic, "ground level" components of an amtology. The in-
dividuals in an ontology may include concrete objects such & people, animals,
tables, automobiles, molecules, and planets, as well as abact individuals such
as numbers and words. Strictly speaking, an ontology need rianclude any in-
dividuals, but one of the general purposes of an ontology isa provide a means
of classifying individuals, even if those individuals are ot explicitly part of the
ontology. In Mimosa, the model editor is provided for de ning the individuals,
out of the de ned categories. Only the individuals can actudly behave and
therefore be simulated. In gure 3.1, we have three plots (p] p2 and p3) and
two people (John and Paul). The name of the individual is optional and indi-
cated before the :. The name after the semi-colon shall bexplained in the

13

CHAPTER 3. THE ONTOLOGIES 14

pl:Farm.Plot

ohn:Farm.Farmer

2:Farm.Plo

Paul:Farm.Farmer

p3:Farm.Plog

Figure 3.1: Farmer and plot individuals.

/pl.Farm.Plol

ownership
ko

ohn:Farm.Farmer

ownership

2:Farm.Plo

Paul:Farm.Farmer

ownership

p3:Farm.Plog

Figure 3.2: Farmers owning plots.

following. It actually is the name of the category the individual belongs to.

3.2 Links

For the model to be properly called a structure, these indivduals usually are
linked to each other in some meaningfull way. In our examplethe gure 3.2
shows some links between the individuals describing that Jon is proprietary of
pl and p2, while Paul is proprietary of p3. The proprietary link is indicated by
the name ownership .

3.3 Attributes

Individuals in the ontology are described by specifying thér attributes. Each
attribute has at least a name and a value, and is used to storenformation that
is speci c to the individual it is attached to. For example th e p2 individual has
attributes such as:

surface 20
cover tree

The value of an attribute can be a complex data type; in this example, the value
of the attribute called cover could be a list of values, not just a single value.
In the gure 3.3, some of the attributes are represented.

CHAPTER 3. THE ONTOLOGIES 15

p2
Trace F
clé Valeur

surface 20
cover tree

Ok _\ (" Cancel :

Figure 3.3: The description of the plot p2.

Farm.Person
<<NativeState>>

age
name

Farm.Herder Farm.Farmer
<<lLanguageState>> <<languageState>>

cashFlow

Figure 3.4: A category hierarchy of plots and people

3.4 Categories

Categories are the speci cation of the common features of guups, sets, or col-
lections of individuals. They are abstractions over sets otoncrete individuals.
Some examples of categories are:

Person : the category of all people (describing what is common to alpeople);

Molecule : the category of all molecules (describing what is common taall
people);

Number : the category of all numbers;

Vehicle : the category of all vehicles;

Car : the category of all cars;

Individual : representing the category of all individuals.

Importantly, a category can subsume or be subsumed by otherategories.
For example,Vehicle subsumesCar, since (necessarily) anything that is a mem-
ber of the latter category is a member of the former. The subsmption relation
is used to create a hierarchy or taxonomy of categories, witth maximally general
category which is calledindividual in Mimosa, and very speci ¢ categories like
MaizeFarmer at the bottom. Figure 3.4 shows such a hierarchy of categor®

Usually what is common to a collection of individuals is that they share
the same attributes. In the gure 3.4, all the people have a nane and an
age. We also assume that each farmer has a cash ow (but not a hder!). By
subsumption, any farmer and any herder has also a name and anga because
they are particular case of Person. In Mimosa an attribute ha a name, a type

CHAPTER 3. THE ONTOLOGIES 16

Farm.Person
<<NativeState>>

age
name

Farm.Plot

Farm.Herder Farm.Farmer ownership <<languageState> >
n

<<Language5tale>> _g—g—<<Lan uageState>>

surface
cover

cashFlow

Figure 3.5: A category hierarchy of plots and people with a réationship

which can be only a single type (short, integer, long, oat, double, string and
color) and a cardinality to have list of values. If an attribu te refers to another
category, it is a relationships and no longer an attribute.

3.5 Relations

An important use of relations is to describe the relationshps between individ-
uals in the ontology. In fact a relation can be considered as mattribute whose
value is another individual in the ontology, or conversely a attribute can be
considered as a relationship with another individual (a nunber is also an indi-
vidual, instance of the category of numbers). For example inthe ontology that
contains the Farmer and the Plot, the Farmer object might have the following
relation:

ownership Plot

This tells us that a Plot can be owned by a Farmer. Together, the set of
relations describes the semantics of the domain. In the gue 3.5, a relation has
been added accordingly. In addition, we have also declaredhat a person can be
proprietary of any number of plots. One can see that the indivduals described
in gure 3.2 appear to be instances of the categories descréd in 3.5 and that
their links appear to be instances of the related relations.

In Mimosa, a relation is uni-directional and links a categoly to another, with
a cardinality.

The most important type of relation is the subsumption relation (is-superclass-
of, the converse of is-a, is-subtype-of or is-subclass-ofjready mentioned in the
previous section.

Another common type of relations is the meronymy relation (written as part-
of) that represents how objects combine together to form corposite objects. For
example, if we extended our example ontology to include obfs like Steering
Wheel, we would say that "Steering Wheel is-part-of Ford Exporer” since a
steering wheel is one of the components of a Ford Explorer. Ilfve introduce
part-of relationships to our ontology, we nd that this simp le and elegant tree
structure quickly becomes complex and signi cantly more dicult to interpret
manually. It is not di cult to understand why; an entity that is described as
'part of' another entity might also be 'part of' a third entit y. Consequently,
individuals may have more than one parent. The structure tha emerges is

CHAPTER 3. THE ONTOLOGIES 17

known as a Directed Acyclic Graph (DAG). This aspect is not introduced in
the ontological level of Mimosa but will be further discussal in the mereological
level where, precisely, a stronger account of meronymy is troduced (but not
yet implemented at this stage).

The part of the ontology consisting of the categories, attrbute descriptions
and relations (either taxonomic or semantical) shall be cded the conceptual
model The part of the ontology consisting of the individuals, their attribute
values and their links shall be called theconcrete model In the following the
editor to create the conceptual model shall be described. Imaddition, we shall
describe how to specify the dynamics associated to each cagery. Thereafter,
we shall introduce the concrete model editor.

Chapter 4

The conceptual model editor

4.1 The editor

The conceptual model editor is made of three panels for editig the conceptual
model:

the graph panel for graphical editing.

the list panel for editing the ontology as a list of de nition s (a kind of
dictionary).

the list panel of in uence types to be explained in the sectiam 5.

The list panel is the reference to know all the categories dened in the edited
conceptual model. In e ect, a category may not appear in the gaph panel.
Conversely, a category may appear several times in the grappanel as well as
categories from other conceptual models. The rational belmd this behavior
is that the drawing (hence the graph panel) must have an explaatory power
(not only a de nitory one) and therefore any drawing clarify ing the explanation
should be possible.

We shall concentrate on the graph panel which is nevertheleseasier to use
for de ning categories. The starting point is the tool bar in the upper part of
the window as illustrated in the gure 4.1 where seven buttors appear:

the rst one is the grabber for selecting an object (categoryor relations)
in the drawing and is always selected by default;

the second is the note object to write down documentary commets to
associate to categories;

the third is the link to associate a comment with a category;

il B = N
Figure 4.1: The buttons of the ontology editor.

18

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 19

L
aer cateqo

Farm.Person
< <NativeState>>

age: Integer
name: String

Figure 4.2: An annotated category.

Existing

Farm.Person
Farm.Farmer
Farm.Plot

Name Herder

New Existing)] _ Cancel

Figure 4.3: The creation dialog for a category.

the fourth is for creating or selecting categories to draw;
the fth one is the taxonomic relationship;
the sixth is the semantic relationship;

nally, the seventh is the button to access the push down menufor ma-
nipulating the grid behavior as already described in 2.4.

The rst three buttons as well as the last one are always preset for each graph
editor, so it shall not be explained again. The gure 4.2 shove the use of a note.

4.2 Category edition

4.2.1 Drawing a category

To draw a category in a given place it is enough to click on the orresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened dlustrated
in the gure 4.3.

This dialog is composed of two parts:

the upper part lists all the categories available in all the ened ontologies.
Selecting one of these and typing either return or pushing tle Existing
button shall draw the corresponding category at the selectd place;

the down part is used to create a new category with a name eld b enter
a new name (which must be unique within the current ontology)

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 20

Farm.Person
<<MativeState>>

age: Integer
name: String

Figure 4.4: The category graphical form.

A rectangle with either one or two subparts shall be drawn at the selected
place 4.4:

the upper part has two lines:
the rst line is the name of the category pre xed by the name of the
ontology;
the second line is the name of the way to de ne the dynamics fothis
category'. NativeState is chosen by default and does nothing.

the down part is the list of attributes with their speci cati on.

4.2.2 Editing a category

A category can be edited by double-clicking on it, or by seleting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...

in the popup menu. The category editor dialog (4.5) shows up \ith the following
parts:

the name of the category, which cannot be changed;

an abstract check box to specify whether the category can hve instances
or not (e.g. most probably, in our example, there shall not bedirect
instances of Person, but only of Farmer and Herder);

the super type, i.e. the category subsuming this category;

a panel where one can specify either the documentation, thettibutes,
the relations and the behavior (see chapter 5).

In gure 4.5, one shows the attribute panel where the local atributes can be
added or deleted through a popup menu. Additionally, one cansee the list of
inherited attributes as shown in gure 4.6, but this list can not be edited. Only
the locally de ned attributes can be edited, the inherited list being computed.

4.2.3 Deleting a category

A category can be deleted by selecting it and selectindkemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the category must be removed from th ontology:

if yes, the category is removed both from the drawing and the ikt of
categories de ned in the ontology;

1For UML literates, it looks like a stereotype, and in fact it h as a related semantics with
respect to the MDA speci cations.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 21

Name
Abstract: H

Super category: [Farm.Person H

| Documentation ~ Attributes | Relations Dynamics |

Attribute declarations.

Local attributes (=) Inherited attributes ()
Auribute Cardinality Type
cashFlow 1 Float

(ok) (cancel

Figure 4.5: The category editor with the attribute panel.

Name
Abstract: H

Super category: [Farm.Person H

| Documentation ~ Attributes | Relations Dynamics |

Attribute declarations.

Local attributes () Inherited attributes (=)
Auribute Cardinality Type
age 1integer
cashFlow 1 Float
name 15tring

(ok) (cancel

Figure 4.6: The category editor with the inherited attribut es.

otherwise, only the drawing is removed but the category remas as an
existing category.

4.3 Relation edition

4.3.1 Drawing a relation

To draw a relation in a given place it is enough to click on the orresponding
button and then from a category (called the source category)to another one
(called the target category), or to right click at the desired place to show up
the same toolbar as a popu menu. A new dialog is opened as illwated in the
gure 4.7.

This dialog is also composed of two parts even if in the gure 4 only one
shows up:

the upper part lists all the existing relations available between the two

New
Relation ownership
Cardinality

f New) Existmg) (" Cancel)

Figure 4.7: The creation dialog for a relation.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 22

Farm.Farmer

Y ownership
<<MNativeState>> |-

Farm.Plot
<<NativeState>>

cashFlow: Float

Figure 4.8: The example of a relation.

Name
Abstract: 0

Super category: [Farm.Person

[Doc i Attributes Relations Dynamics |

Relation declarations

Local relations (=) Inherited relations ()
Relation Cardinality Category
ownership *Plot

ok) (Cancel)

Figure 4.9: The relations of a category.

selected categories. Selecting one of these and typing e&hreturn or
pushing the Existing button shall draw the corresponding relation be-
tween the two categories.

the down part is used to create a new relation with three elds

a name eld to enter a new name (which must be unique within the
source category);

a cardinality eld to specify whether the relation can reference one,
several or any number of objects of the given target category

The arrow from the source category to the target category is anotated by
all the relevant information as shown in the gure 4.8. Additionally, the *
means that each of these links can be drawn with any number of Ipts.

The list of de ned relations for a category also appears in tke relation panel
of the category editor as shown in the gure 4.9. A relation can be added or
removed directly from this panel but the added relations shdl be drawn only if
requested as an existing relations.

The subsumption or taxonomic relationships is a particularcase where noth-
ing need to be speci ed but the source and target categories.

4.3.2 Editing a relation

A relation can be edited by double-clicking on it, or by seleting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The same editor appears as for creating it.

4.3.3 Deleting a relation

A relation can be deleted by selecting it and selectingqRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the relation must be removed from the mode

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 23

if yes, the relation is removed both from the drawing and the Ist of rela-
tions de ned for the source category;

otherwise, only the drawing is removed but the category remas un-
changed.

A relation can also be removed from the relation panel of the surce category
editor. If it is deleted this way, all the drawings of the relation shall disappear
as well.

Chapter 5

The dynamics

5.1 Introduction

For each category, one can associate a specication of the dwmics of the
corresponding individuals. Basically, it is made by seledhg a way to specify
the dynamics (a state machine, a markov process, a di erenal equation, and
the list is extensible at will) and then by specifying the dynamics according to
the selected way (the states and transitions for a state macime, the states and
transition matrix for a markov process, etc.). The way to specify the dynamics
shall be called the state (although it does not only de nes the state but also
how the state changes) and the associated speci cation thstate speci cation.
The state can be speci ed directly when creating a new categy as explained in
the section 4.2.1. Otherwise, it is enough to open the categy editor as shown
in gure 5.1 and to select the behavior panel.
The behavior panel is itself made of four subpanels:

the probe panel is used to de ne what can be observed from thendividu-

als. It is used for displaying what happens during the simulaion or saving

it to any media for further processing (statistics, etc.). The probes shall
be described in the section 5.2.4.

the incoming in uences panel is used to specify the events th individuals
are able to react to. They shall be explained in the sections 2.1 and
5.2.3.

the outgoing in uences panel is used to specify the events th individuals
are producing. They shall also be explained in the sections.8.1 and 5.2.3.

the behavior panel (sorry, it has the same name as the upper \el panel)

is used to specify the state and its speci cation. In the gure 5.1, one can
see the drop-down menu in the upper part to select the state (. the way
one wants to specify the behavior) and the associated speaation. Here,

the chosen way to specify the behavior is through a state charmas speci ed

in UML called StateChartState . Therefore a corresponding state chart
editor is shown.

In addition, at the top, there is the specication of the mult iplier between

24

CHAPTER 5. THE DYNAMICS 25

Nom

Abstrait B

Super type: | Farm.EntityType

! Auributs Relations G

Comportements

Unité de temps 1

! Sondes Influences entrantes Influences sortantes G

Comportements

Comportement: | StateChartState

b d'état Réactions logiques |

[class mim heduler.languag

Ok Cancel

Figure 5.1: The behavior panel of the category.

the global time grain and the local time grain'. Further explanation on the
representation of time in Mimosa can be found in section 5.5.

To understand the o ered possibilities and, more importantly, the behavior
one can expect from these various states and state speci cans, it is necessary
to go down to the ground and expose a little bit of the underlying machinery.
This is done in the following section. Thereafter, we shallmtroduce some already
existing states and their corresponding speci cations.

5.2 The operational semantics

Globally, the underlying machinery is nothing but a discrete event simulation
system. The running model is made of entities sending time stmped events
which are delivered to their target entities at the speci ed dates, possibly gener-
ating new time stamped events and so on. The scheduler is in einge of ordering
the events by their time stamps and to execute them in order. The only thing to
specify is how each entity behaves, i.e. generates new timéasnped events and
reacts to incoming events. It is the purpose of the next sectin. In the following
the events are called in uences for obscure (another name fdnistorical) reasons

[8].

5.2.1 The model

The underlying simulation semantics is based on an extensioof //-DEVS (see
[13]) called M-DEVS as a shorthand for Mimosa-DEVS. Therefoe, one must

1The grain is the smallest di erence between any two time meas ure which can be distin-
guished.

CHAPTER 5. THE DYNAMICS 26

understand how M-DEVS works in order to master the behavior d the models
although most details are assumed to be hidden by higher levef abstractions
as suggested in the introduction of this chapter.

A M-DEVS entity is a tuple:

<X;Y;050Nit; ext; int 5 log: coni ext; int; log: st >
with an implicit state space on which no hypothesis is made, \Were:
X: is a set of incoming in uences;
Y: is a set of outgoing in uences;
O: is a set of output ports the elements of Y are sent to;
init : is a function to set the model in its initial state;

ext - 1S @ function to specify the reaction to a set of incoming in uences (all the
in uences occurring at the same time are given simultaneous);

int IS a function to specify the internal change (when it occurs $ speci ed by
ta and what occurs is specied by i);

con: is a function to specify the reaction to the occurrence simubneously of
an internal change and the arrival of a set of incoming in uerces;

log: IS & function to specify the reaction to a set of logical in uences, possibly
producing further logical in uences;

ext . IS @ function to provide the outgoing in uences (when it is caled is also
specied by);

int - IS a function to provide the internal in uence to occur after a duration of

ta;
log : 1S @ function to provide the logical in uences to occur after each transtion;

str - 1S a function to provide the structural changes to occur alsoafter each
transtion;

. is a function which provides the duration until the next inte rnal in uence;

For all functions but init , the duration since the last cycle (see below) is given
as an argument. Therefore the internal logic of any atomic mdel is based on
durations.

Although complicated at the rst sight, the logics is very simple:

ext and ¢y are the functions to issue the events (ex) and to handle
them (ox). It corresponds straight away to the intuitive event based
mechanism as explained in introduction. The events are prodced when
elapsed since the last transition;

int » and i are the functions for specifying the spontaneous behavior,
i.e. what the box does (int), when () and how (int);

log @nd oy are used to propagate information (og) and make compu-
tations based on this information (jog);

CHAPTER 5. THE DYNAMICS 27

str Speci es the possible modi cations in the interconnection topology
(see below).

Mimosa implements a unique so-called M-DEVS bus which is a $eof M-
DEVS entities with interconnected ports. More precisely, aM-DEVS bus is a
pair < E;links > where:

E: is a set of M-DEVS entities;

links : is a mapping fromM O into E specifying a mutable interconnection
topology;

For simulation, the M-DEVS bus runs in cycles. Each cycle coresponds to
a certain date where everything happening at that date is prgpagated through
all the M-DEVS atomic models. At each cycle:

1. each model is asked for itd,. Let min be the smallest value;
2. the global time is advanced bymin . Let:

C be the set of models with the samemin ;
C%2 C be the set of models producing outputs;

3. ex is called for each model inC°and the outgoing in uences are gathered
and their destinations are identi ed using links ;

4, for each modelm in C:

if m has simultaneous incoming in uences and an internal change
con IS called;

if m has only an internal change, i; is called;
if m has only incoming in uences, e is called;

and all the outgoing logical in uences are gathered;

5. all the logical in uences are dispatched vialinks by calling g and og
until there is no logical in uences left (be careful about paossible loops
which are not detected).

6. all the structural changes are dispatched by calling s .

For each individual, MIMOSA shall generate a correspondingentity which
shall be initialized from the list of its attribute values in a state speci c way. A
more formal and detailed account can be found in [11].

5.2.2 The ports

A port provides a way to connect M-DEVS entities together. A port can connect
an entity to any number of other entities. In Mimosa we distinguish between
a port and a port name. A port name can be a simple name (aString),
designating all the entities linked through the given port, or a name with an
index (with the syntax <name>['('<int>")"]), designating one of the entities
linked through this port. In the case the cardinality of the p ort is one (only one
entity can be linked through this port). The two possible port names <name>or

CHAPTER 5. THE DYNAMICS 28

<name>'(0)' are equivalent. Therefore the index is optional if the cardnality
is 1.

If the reader perceives some relationship between a port and link, it is right.
We are here using the vocabulary used in the modeling and sintation commu-
nity which is unrelated to the vocabulary used in the ontology community. As
for individuals generating M-DEVS entities, the links are used to produce the
initial interconnection topology as ports.

5.2.3 The in uences

An in uence is an event which is transmitted between two M-DEVS entities. In
Mimosa we also distinguish between in uence types and in uaéces as instances
of in uence types.

The in uence types are just names but must be declared. Thesenames
are unique in a given conceptual model (or ontology). This type level is not
really useful at this stage but provides a provision for further typing (like the
declaration of the arguments) to be used for connectivity wih other buses like
HLA or CORBA where the type of transmitted information has to be declared.

The in uences are instances of in uence types. For the time keing they have:

a name which is the name of the corresponding in uence type;
a content which is either empty or a collection of elements.

For ensuring communication between entities possibly writen in various lan-
guages, and in particular, in various scripting languagesa standard and limited
format is imposed for the content. A content is necessarily acollection (at the
implementation level an instance of JavaArrayList) of:

collections, allowing recursive structures;

simple types: shorts, integers, longs, oats, doubles, bdeans and strings
(respectively implemented internally in Java as instancesf Short, Integer,
Long, Float, Double, Boolean and String).

No other kind of data can be send through the in uences.

5.2.4 The probes

It is possible to associate to any individual (therefore to any M-DEVS entity), a

visualization window for displaying any information evolving over time (e.g. the
entity state changes). Having no hypothesis on the nature othe entity states,

there is NO automatic synchronization between the model andts visualization.

To perform this visualization, one has to declare a list of pobes given by their
name, type (only simple types are allowed) and cardinality. When specifying
the behavior, i.e. the various transition functions, the user has to explicitly
send probe values whenever he wants to signal a change. Thegtre value is
propagated to the visualization window which can perform whatever one wants:
drawing or saving the data for further processing.

CHAPTER 5. THE DYNAMICS 29

5.2.5 The time

The underlying time for the whole system is considered dis@te (regardless of
the grain which could be as ne as picoseconds) and thereformapped on natural
numbers. As already mentioned, an M-DEVS entity only consicers durations.
In addition, these durations can only be expressed as integs.

When simulating an M-DEVS entity, a local time is deployed. The creation
of an M-DEVS atomic model either at the start of the simulation or during
it, de nes the origin of the local time (0). All the durations are added up,
generating a local date as an integer. In particular, this Iccal time is used to
compute the durations transmitted to the M-DEVS entity.

A step further, the M-DEVS bus de nes a global time. The origin of the
global time (0) is the start of the simulation (initializati on always occurs at the
global time 0). The M-DEVS entity local times are mapped to the global time
in two ways:

the origin of the local time is situated in the global time at the (global)
time of creation of the M-DEVS entity;

the ratio between the local time grain and the global time grdn is given.
The global time grain is assumed to be the smallest possiblergin able
to take into account the grain of any other atomic model as an ntegral
multiplier of the global grain.

Still at this stage, the time is a natural number without dime nsion (without
unit). The correspondence between this time and the real tine where the origin
of simulation corresponds to a real date and the global grairhas a unit (pi-
cosecond, hour or week) shall be speci ed externally. It isdreseen to be able to
declare this information to the scheduler and use this refeznce to de ne in an
easier way the time units of the entities. It is not yet completely implemented
at this stage.

In summary, any M-DEVS entity has

a grain (the smallest undistinguishable time di erence) dened implicitly
by having durations expressed with integers and explicitlyby a multiplier
with the global grain;

an origin de ned implicitly by having the entity life starti ng at 0 and
explicitly by a position of this origin with respect to the gl obal time.

5.3 The behavior speci cation

In order to describe the behavior of an entity, the user must &pect to have
to specify each of the mentioned function for proper functiming of the model,
hence the importance to understand the underlying operatimal semantics as
described before. However, higher level speci cations cabe made as various
kind of state machines, petri nets, directly speci ed di er ential equations with
various means of integration as long as there execution canebmapped in the
previously described functions. These extensions can be ddd at will to the
system in a way which is described in the programmer's manual

When editing a category behavior, a number of panes are dedited for
specifying the behavior (see the gure 5.1):

CHAPTER 5. THE DYNAMICS 30

the incoming in uences to declare the list of incoming in uences;
the outgoing in uences to declare the list of outgoing in uences;

the probes to declare which information is dynamically provded during
entity simulation;

the behavior pane to describe the behavior itself. At the topof this pane,
there is drop down menu of available ways of specifying the bdeavior.

The available means for specifying the behavior are as foles:

by writing a piece of Java program and declare it to the Mimosasystem
to make it available in the user interface;

by specifying the behavior of each of the mentioned functiorusing a script-
ing language. Several scripting languages are availableaya, scheme, jess
(unavailable due to a need for a license), python and prologr{ot fully
tested yet);

with a state/transition diagram where the conditions and actions can be
speci ed in one of the scripting languages mentioned before

with any higher level mean of speci cation as markov processs, etc. de-
pending on the availability of the corresponding plug-in.

These various technics shall be described in turn in the nexsections.

5.3.1 Programmatic speci cation

This section is more appropriate for the programmer's manuébut is included

here to introduce the basics which are made available in thether ways of spec-

ifying the model behavior. With your favorite Java IDE (for e xample Eclipse
(http://www.eclipse.org)), create a new project with a pac kage (let's call it ex-

ample) in which you have to create a class as a subclassmimosa.scheduler.NativeState
The result is a le with the following content:

package example;
import mimosa.scheduler.NativeState;

public class MyExample extends NativeState {

}
NativeState de nes ten (10) methods doing nothing by default:

public void dolnstancelnitialize() throws EntityExcepti on; : which
is called only once when the entity is created (for example irthe model
editor). Use it to create the initial content of state variab les.

public void dolnitialize() throws EntityException; : equivalentto
the init function. It is called each time the model is initialized by the
scheduler. As a principle, each time a model is initialized,exactly the
same initial state should result. If you are using random geerators, try
to reinitialize it with the same seed.

CHAPTER 5. THE DYNAMICS 31

public void doExternalTransition() throws EntityExcepti on; : equiv-
alent to eyt .

public void dolnternalTransition() throws EntityExcepti on; : equiv-
alent to .

public void doLogicalTransition() throws EntityExceptio n;: equiv-
alent to og.

public void doConfluentTransition() throws EntityExcept ion; : equiv-
alentto con.

public void doGetExternal() throws EntityException; . equivalent

tO ext -

public void doGetinternal() throws EntityException; . equivalent

to and i together.

public void doGetLogical() throws EntityException; : equivalentto
log -

public void doGetStructural() throws EntityException; . equiva-
lentto s .

If something is going wrong, just throw an EntityException with the entity
and a message as parameters. The exception will be taken intaccount by
the architecture in an appropriate way. Do not forget to catch any possible
exception and raise anEntityException accordingly for securing the model
execution. Because they are prede ned for doing nothing, yo can only de ne
the methods you actually need.

When calling each method, this variable is de ned and appropiately bound
in the context:

time: contains the duration since the previous transition (remenber that these
methods are called in a given cycle and the M-DEVS bus advancetime
from a cycle to another);

The following methods are de ned for accessing the incomingn uences:
getAllinfluences() : to get the list of incoming in uences in any order;

getinfluence(String name) : to get the list of incoming in uences with
the given name. It is used to control the order in which to hande the
incoming in uences;

getinternallnfluence() : to get the incoming internal in uence.

To program each functionality, a number of methods are de nal by cate-
gories:

to manipulate random generatorg:

public Random newRandom();

2jt is necessary to hide which kind of generator is used. Curre ntly the Mersenne Twister
random generator is known as one of the best and provided in Mi mosa.

CHAPTER 5. THE DYNAMICS 32

public Random newRandom(long seed);
public boolean newBoolean(Random rand);
public int newInt(Random rand,int max);
public double newDouble(Random rand);

to easily create ports and port references:

public Port port(String name,int index);
public Port portRef(Port port...);

to manipulate the in uence content:

Object contentOf(Influence influence) : which returns either
null if there is no content or a Collection of objects (as de ned
in 5.2.3).

List list(Object... objects) . to create a list of objects as a

content or sub-content.

Object object(T i) : where T is one of the Java simple types (short,
int, etc.) to encapsulate them within the corresponding class instance
(Short, Integer, etc.).

T toT(Object 0) : where T is one of the Java simple types (short,
int, etc.) to unbox them from the corresponding class instarce (Short,
Integer, etc.).

to get the initial value of a parameter:
public Object getParameter(String name)

to post an in uence at a given port:

void sendExternal(String portName,String influenceType Name)

void sendExternal(Port portName,String influenceTypeNa me),

void sendExternal(String portName,String influenceType Name,Object
args) ,

void sendExternal(Port portName,String influenceTypeNa me,Object
args) .

void sendLogical(String portName,String influenceTypeN ame),

void sendLogical(Port portName,String influenceTypeNam e),
void sendLogical(String portName,String influenceTypeN ame,Object

args) ,

void sendLogical(Port portName,String influenceTypeNam e,Object
args) .

void sendlInternal(int duration,String influenceTypeNam e),

void sendlInternal(int duration,String influenceTypeNam e,Object
args) ,

void reply(Logicallnfluence influence,String influence TypeName)

These methods can be called in most methods.

CHAPTER 5. THE DYNAMICS 33

to signal a state change by a probe:

public void sendProbe(String name,Object args...)
to destroy itself:

public void die()

It removes the entity from the scheduler, removes of the linkreferences as
well as all the scheduled incoming in uences.

In addition, a number of methods are de ned to dynamically create and link
entities during the simulation:

void addPort(PortReference name, String categoryName, bo olean
traced, Map<String,Object> parameters) : creates an entity as an in-
stance of the given category, whether it is traced or not and he map of
attribute values;

void addPort(String name, String categoryName, boolean tr aced,
Map<String,Object> parameters) : same as above when there is a sim-
ple syntax for the port reference;

void linkPort(PortReference portRefl, PortReference por tRef2) :
links the port reference to the entities referenced by the seond port ref-
erence, creating new links;

void linkPort(String portRefl, PortReference portRef2) : same as
above;
void linkPort(PortReference portRefl, String portRef2) : same as
above;
void linkPort(String portRefl, String portRef2) : same as above;
void removePort(PortReference portRef) : removes the entities from

the given port, without destroying the referenced entities (they kill them-
selves usingdie).

void removePort(PortReference portRef) : same as above.

To simplify the speci cation of the parameters in addPort, two additional meth-
ods are provided:

public Pair pair(String name,Object args...) . for creating a pair
(parameter name, value);

public Map<String,Object> parameters(Pair args...) : for creating
the adequate map from the pairs.

For example, if we want to program the behavior of a clock whit sends a
tick inuence toits clocked portat interval time, we could have the following
code:

CHAPTER 5. THE DYNAMICS 34

package example;
import mimosa.scheduler.NativeState;
public class MyClock extends NativeState {

private int interval,

/**

* @see mimosa.scheduler.NativeState#dolnitialize()

*/

@Override

public void dolnitialize() throws EntityException {
interval = getParameter(“interval");

}

/**

* @see mimosa.scheduler.NativeState#doGetinternal()

*/

@Override

public void doGetinternal() throws EntityException {
sendinternal(interval,"tick™);

}

/**
* @see mimosa.scheduler.NativeState#doGetExternal()
*/

@Override

public void doGetExternal() throws EntityException {

sendExternal("clocked","tick™);
}
}

in which we declare a variable to cache the parameter value fte interval between
two ticks), the function to get the parameter value, the function which signals
an output after the given interval and <4 where a single in uence is sent to
the port.

Of course, it is not enough to write the code. This code has to & known
from Mimosa. In order to do that, you have to create an XML le i n which
Mimosa can read the following declarations:

<?xml version="1.0"?>
<mimosamodule name="Example" package="example">
<behaviour notion="EntityType" implementation="MyCloc k">
<parameters>
<parameter name="interval" cardinality="1" type="java.
</parameters>
<outInfluences>
<influenceType name="tick"/>
</outInfluences>
<outPorts>
<port name="clocked" entityType="EntityType"/>
</outPorts>
</behaviour>

lang.Integer"/>

CHAPTER 5. THE DYNAMICS 35

</mimosamodule>

This XML le contains everything you would have declared thr ough the user
interface and additionnaly de nes through the package and implementation
attributes where to nd the corresponding class.

You then have to create a folder calledexample, to put the .jar containing
the compiled class, to de ne a le called example-config.xml and to put the
whole folder in the plugins subdirectory of Mimosa. By trying this example, the
behavior MyClockwill appear in the list of available behaviors.

In general, any new behavior (or way of de ning behaviors) ca be added
to Mimosa by putting in the plugins directory a folder called xxx with a le
called xxx-config.xml in it with the related XML content and as many .jar
as necessary. Further details as well as the complete syntaaf the XML le
shall hopefully be presented in the programmer's manual.

5.3.2 Scripted speci cation

The previous procedure being relatively heavy but necessgrif one wants either
an e cient piece of code or to use Java to encapsulate a legacgimulation

software, we provide the same functionality by using scriping languages directly
through the user interface. The basic principles are the sam and we are using
the same names for the variables and functions or equivalentor consistency.
For using this functionality, you have to select LanguageState in the drop down

menu of the behavior pane. Immediately below, you will have another drop
down menu to select the desired scripting language.

In a model, any combination of scripting languages can be uskbecause
all the speci c data structures are translated into a standard Java format and
back to the speci c data structures. So feel free to use any o&you nd most
appropriate for your usage. Of course, it requires to be multlingual!

Java scripting

Java scripting makes available the full Java language by usig the bean shell
library (see [5] for getting the related documentation). In particular, all the
methods de ned in the section 5.3.1 are readily available. ldwever to call them,
a new variable is de ned: self . The methods can be called by addressing them
to self . For example, for the ¢4 function, the code is:

self.sendExternal("clocked","tick");

There is one drawback in using Java scripting: all the Java types have to
be pre xed explicitly by the package name (for examplejava.lang.Integer
instead of simply Integer).

Scheme scripting

The Scheme language is a kind of pure functional language (lsad on lambda-
calculus). The facilities for manipulating symbols and ligs make it particularly
useful for qualitative and symbolic manipulations, much less for numerical com-
putations. We are using the Kawa library ([6]: fast and complete but with
scoping problems) as well as JScheme ([3]: limited and slowub semantically
consistent) for providing Scheme. The documentation for tke language itself

CHAPTER 5. THE DYNAMICS 36

can be found on the corresponding web site. The appendix A prades a short
reference to the Scheme language as well as the list of prowed functions for
calling Mimosa.

Jess scripting

Jess is a rule base language with a forward chaining semansiqsee [2]). The
behavior is described as a single set of rules of the formconditions> =>
<actions> . Whenever the conditions are met, the corresponding rule isred
and the actions executed. In our case, each M-DEVS functionntroduces the
time, the in uences and the function name in the fact based anl the rules are
red accordingly until no rule is applicable. The example of the clock looks like
this:

(defrule initializel

(initialize)

=>

(make (interval (getParameter "interval"))))
(defrule getExternal

(getExternal)

=>

(sendExternal "clocked" "tick™)
(defrule getinternal

(getinternal)

(interval $value)

=>

(sendinternal $value "tick"))

It is no longer maintained because Jess requires a licence ih is free for
academics but costly for others. The library is not providedwith the distribution
for that reason but can be downloaded from [2].

Python scripting

The implementation uses the Jython library whose documentéion can be found
on [7]. We are using the possibility in this version of Pythonto call Java objects
with the standard Python syntax. Accordingly, the variable self is de ned as
well as all the variables as in Java and the corresponding mébds can be called
directly. So, there is not much di erence with Java.

Prolog scripting

Prolog ia a rule base language with a backward chaining seméins. The behav-
ior is described as a single set of rules of the formconclusion> :- <conditions>
The program is run by asking for a conclusion and the program ties to nd
the possible proofs. As in Jess, each M-DEVS function introdces the time,
the in uences and the function name in the fact based and the ules are red
accordingly until no rule is applicable. The run predicate must be de ned. The
example of the clock looks like this:

run :- initialize,
X is getParameter(interval),

CHAPTER 5. THE DYNAMICS 37

asserta(interval(X)).
run :- getExternal,
sendExternal(clocked,tick).
run :- getinternal,
interval(X),
sendInternal(X,tick).

Implemented but not yet fully tested. The implementation uses the tuProlog
library whose documentation can be found on [4].

Smalltalk scripting

Implemented but not yet fully tested. The implementation uses Athena (see the
we site [1]) which is a lightweight implementation of Smalltalk for embedded
applications. The resulting scripts look awfull so it would probably not be
explored further.

5.3.3 State charts

Coming soon.

5.3.4 FRurther extensions

This level being extensible at will by adding further meta-ontologies, this chapter
shall only describe some of them as provided in the rst versins of Mimosa.
How to de ne new meta-ontologies is described in the programmer's manual. In
this chapter, we shall introduce the meta-ontologies for olfect, space, cellular
automata and multi-agent systems.

The objects

Most categories have very simple behavior corresponding tmhly to what is
available in objet-oriented programming. For the categores, it is not necessary
to provide the full M-DEVS functionality (although object- orientedness can be
mapped in a subpart of M-DEVS). We have provided two versionsorresponding
to most needs:

StaticObject is used when the only functionality is around state variable
values being set and get;

SimpleObject is an extension ofStaticObject where external and logical
in uences are considered as method calls: the external in ences when
the SimpleObject will change state in response, and the logical in uences
when only information updates and requests have to be handb:

StaticObject contains a set of state variables to choose among the at-
tributes 3. The following incoming in uences are expected:

setState name value : as an external in uence to change the value of
one of the variables;

31t is assumed that a state variables always has an initial val ue to be set from the corre-
sponding attribute.

CHAPTER 5. THE DYNAMICS 38

Nom SimpleObject

Abstrait: a

Super type: [DefaultOntology.EntityType

| Attributs Relations Comportement |

Comportements

Unité de temps 1

! Sondes Influences entrantes Influences sortantes Compartement |

Cemportements

Comportement [simpleobject

a >k
—> e

b nin
clear

| Javalnterpreter &
| calll = |
if (a > 0) sendExternal("link","inf" list(c));.

Ok) [Cancel

Figure 5.2: The behavior panel of a simple object.

getState name: as a logical in uence to ask for the value of one of the
variables.

The following outgoing in uences are issued in response tohe getState in u-
ence:

state name value : as a logical in uence to communicate the value of the
requested state variable;

undefinedState nhame: as a logical in uence to communicate the state
variable has no value.

SimpleObject has the same semantics aStaticObject and as such pro-
vides to the same incoming and outgoing in uences. In additbn to de ning the
state variables, the modeler can add as many additional incaing and outgoing
in uences as he wants. SimpleObject allows to associate a piece of code to
execute to each incoming in uence. In gure 5.2, the upper pat shows on the
left the list of de ned attributes and on the right the list of attributes which
have been chosen as state variables. In the bottom part, onean see the chosen
scripting language, the chosen incoming in uence and the asociated code. The
arguments of the in uence if any are stored in the variablearguments as a list.

The spaces

Coming soon.

CHAPTER 5. THE DYNAMICS

The cellular automata

Coming soon.

The multi-agent systems

Coming soon.

39

Chapter 6

The concrete model editor

At this stage, the conceptual model has been completely de rd both with
its structural part (the ontology properly speaking) with t he categories, their
attributes and their relations, and its dynamical part by sp ecifying in a way
or another the dynamics of the individuals specied by each ategory. The
concrete model editor shall use these de nitions for providhg the user with
the possibility to describe as many concrete models as he wenas a set of
individuals, attribute values and links. These individuals, attribute values and
links are nothing but the instances of the corresponding catgories, attribute
descriptions and relations. Their edition shall be descriled in the sections 6.1
and 6.2.

In addition, the user must specify what to do with the probes (see 5.2.4). As a
reminder, the probes are speci ed in the dynamical descripibn of the categories
and must be sent to signal a state change of interest, usingendProbe. The
concrete model editor provides the mean to specify the outpts where one wants
to send these probes. These outputs can be visual as graphsaghs, grids, etc.
or can be les, databases or even channels to various tools nming in parallel
like R, Excel, etc.. This part shall be described in the secthn 6.3.

Finally, the user can visually specify a control panel to be $ed during the
simulation which includes:

the visual outputs;
the widgets to parameterize the model.

This latter part shall be described in section 6.4.
The concrete model editor is made of two panels:

on the left pane, there is a list of existing models. These moels can be
created or removed by double-clicking in this pane.

on the right pane, there are two graph panels:

the rst one is a graph panel very similar to the one used for ceating
conceptual models. The top of the panel is occupied by a dropavn
menu to select the conceptual model from which one wants to istan-
tiate the individuals and links. A concrete model can be draw from
several conceptual models combining various sources of kwtedge.

40

CHAPTER 6. THE CONCRETE MODEL EDITOR 41

0 BN Oy [

Figure 6.1: The buttons of the model editor.

the second one is used to visually draw the control panel forhe
simulation of the corresponding model.

Apart from the conceptual model drop down menu, the starting point is the
tool bar in the upper part of the rst graph panel as illustrat ed in the gure 6.1
where six buttons appear:

6.1

the rst one is the grabber for selecting an object (individual or links) in
the drawing and is always selected by default;

the second is the note object to write down documentary commets to
associate to individuals;

the third is the link to associate a comment with an individual;
the fourth is for creating or selecting individuals to draw;

the fth one is the link;

the sixth is used for creating an output;

the seventh is a link between an individual and an output to specify where
to send the probes;

nally, the sixth is the button to access the push down menu far manipu-
lating the grid behavior as already described in 2.4.

Individual edition

6.1.1 Drawing an individual

To draw an individual in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened dlustrated
in the gure 6.2.

This dialog is composed of two parts:

the upper part lists all the individuals available in the selected model.
Selecting one of these and typing either return or pushing tle Existing
button shall draw the corresponding individual at the seleded place.

the down part is used to create a new individual with two elds:

a drop down menu from which to select the category one wants to
create an individual from;

a name eld to enter a name which is optional but can be used for
documentation purpose.

CHAPTER 6. THE CONCRETE MODEL EDITOR 42

Existing
John:Farm.Farmer
Paul:Farm.Farmer
pl:Farm.Plot
p2:Farm.Plot

New
Catenory ST il

Name (optional) p3

(" New) "_Exisling) I_rCan(EI)

Figure 6.2: The creation dialog for an individual.

p3:Farm.Plot

surface: 15.0

Figure 6.3: The individual graphical form.

A rectangle is drawn as illustrated in the gure 6.3 with a name which
composed of the optional name of the individual, a semi-colo and the category
name which is itself composed of the ontology name and the cagory name.
Under its identi cation, the list of attribute values is ava ilable.

6.1.2 Editing an individual

An individual can be edited by double-clicking on it, or by sedecting it and
selectingEdit... from the Edit menu, or by right-clicking on it and selecting
Edit... in the popup menu. The individual editor dialog (6.4) shows y with
the following parts:

the name of the category, which cannot be changed,;
the name of the individual which can be changed at will;

a trace check box to specify whether the individual has to ke traced. This
allows to trace the M-DEVS function calls speci cally for one individual,

a panel where one can specify the attribute values.

6.1.3 Deleting an individual

An individual can be deleted by selecting it and selectingRemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the individual must be removed fromthe model:

if yes, the individual is removed both from the drawing and the list of
existing individuals de ned in the model;

otherwise, only the drawing is removed but the individual remains as an
existing individual.

CHAPTER 6. THE CONCRETE MODEL EDITOR 43

John

Trace a

clé Valeur

age 25
cashFlow 2000.0
rame ______|

Ok Cancel)

Figure 6.4: The individual editor with the attribute panel.

New

Relation type | ownership(l) %

0

fr_ Mew) (Exisling?_ [Cancel)

Figure 6.5: The creation dialog for a link.

6.2 Link edition
6.2.1 Drawing a link

To draw a link in a given place it is enough to click on the corresponding button
and then from an individual (called the source individual) to another one (called
the target individual), or to right click at the desired plac e to show up the same
toolbar as a popu menu. A new dialog is opened as illustratedni the gure 6.5.

This dialog is composed of the list of available relations beveen the two
selected individuals as de ned in the corresponding categy of the source in-
dividual. Depending on the arity of the relation (i.e. the number of indices to
fully specify the relation), as many text elds are displayed underneath to enter
the indices values. In the gure 6.5, the relation is of arity 1, so only one index
must be speci ed.

The arrow from the source individual to the target individual is annotated
by the relation name as shown in the gure 6.6. The index values are written
between parenthesis.

6.2.2 Deleting a link

A link can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the link must be removed from the model:

if yes, the link is removed both from the drawing and the list of links
de ned for the model;

otherwise, only the drawing is removed but the link remains unchanged.

CHAPTER 6. THE CONCRETE MODEL EDITOR 44

pl:Farm.Plot
ownership(0) surface: 10.0
age: 30
cashFlow: 1200.0
name: Parker
p2:Farm.Plot
Paul:Farm.Farmer surface: 10.0
ownership(0)
—
age: 45 ownership(1)
cashFlow: 5300.0)
name: McGregor PAFIETLEIE
surface: 15.0

Figure 6.6: The example of links.

6.3 Output speci cation

The gure 6.7 shows a concrete model with three individuals ad one output.
The arrows are connecting the individuals to an output which is, in this case,
a 2D grid view, specifying that the corresponding probes musbe sent to that
output.

6.3.1 Drawing an output

To draw an output in a given place it is enough to click on the caresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened dlustrated
in the gure 6.8.

This dialog is composed of two parts:

the upper part lists all the outputs available in the selected model. Select-
ing one of these and typing either return or pushing theExisting button
shall draw the corresponding output at the selected place.

the down part is used to create a new output with a drop down mem from
which to select the kind of output one wants to create.

An ellipse is drawn as illustrated in the gure 6.9 with a name which com-
posed of the kind of chosen output and an automatically geneated name be-
tween parenthesis to uniquely identify this output for furt her manipulation.

6.3.2 Editing an output

An output can be edited by double-clicking on it, or by selecing it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The output editor dialog (6.10) shows up wth two parts:

a drop down menu to choose the kind of output;

CHAPTER 6. THE CONCRETE MODEL EDITOR 45

"B.0.60 Concrete model: StupidModel3({StupidModei3model.xml)
DefaultMode! [Concrete model Control panel |
Conceptual model: | DefaultOntology ¥
- = -, | o
= [B =
StupidModel3.BugPosition
seed: 5612653141
population |space
observer
:StupidModel3.BugPopulation StupidModel3.Space
nbBug: 20 nbLine: 20
nbCol: 20

Figure 6.7: A concrete model with an output speci cation.

T

Existing
Discrete2 DSpaceView(out2)

-New

Output: | Probeview #

(" New \ (’ Existing ‘\ l’_’CanceI 3

\

Figure 6.8: The creation dialog for an output.

{Discrete2DSpaceView(out?2,

Figure 6.9: The output graphical form.

CHAPTER 6. THE CONCRETE MODEL EDITOR 46

Output [Discrete2DSpaceView

["Cell Object |

Layer

[INF #][02 (Color

[INF *1{04 0.0 Color)

[INF B (Color)
food i —

TINF #][os (Color)

[ELSE #][0.0 (Color)

More conditions) (Less conditions

("More layers) (Less layers)

Ok Cancel

Figure 6.10: The output editor with an attribute panel.

a panel which depends entirely on the kind of output. In the gure 6.10,
it is an editor to attribute colors to various probe values for visualization.
If the output is directed to a le, the le should be de ned, et c.

The available outputs depend on the behavior associated tohte correspond-
ing individual and are therefore described with the possibé dynamical speci -
cations. However, a number of general purpose outputs are prided and shall
be described in the following.

ProbeView

Coming soon.

ProbeFileOutput

Coming soon.

PlotView

Coming soon.

GraphView

Coming soon.

6.3.3 Deleting an output

An output can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the output must be removed from the model:

if yes, the output is removed both from the drawing and the lig of existing
outputs de ned in the model;

otherwise, only the drawing is removed but the output remairs as an
existing output.

CHAPTER 6. THE CONCRETE MODEL EDITOR a7

Existing
Output to DiscreteZ DSpaceView(out2)

New

(" New) (Existing) (_Cancel

Figure 6.11: The creation dialog for an output edge.

([B o N

Figure 6.12: The control panel toolbar.

6.3.4 Drawing an output edge

To draw an output edge in a given place it is enough to click on he corresponding
button and then from an individual (called the source individual) to an output
(called the target output), or to right click at the desired p lace to show up the
same toolbar as a popu menu. A new dialog is opened as illustied in the gure
6.11.

This dialog is composed of the list of available output edgedetween the
individual and the output.

6.3.5 Deleting an output edge

An output edge can be deleted by selecting it and selectindiRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output edge must be removed fronthe model:

if yes, the output edge is removed both from the drawing and tke list of
output edges de ned for the model;

otherwise, only the drawing is removed but the output edge renains un-
changed.

6.4 Control panel de nition

The control panel editor is used to position the various contol panel elements
on the control panel. The toolbar is shown in the gure 6.12 where, apart from
the usual buttons, we have two main buttons:

the green button is used to add an output view to the control panel;
the yellow button is used to add a parameter editor to the contol panel.

The gure 6.13 shows a control panel with two parameter editas (yellow)
and one output view (green).

CHAPTER 6. THE CONCRETE MODEL EDITOR

‘0.00 Concrete model: StupidModel3(StupidModei3model.xml)*

48

| DefaultModel ‘ | Concrete model Control panel |

[stupidmodel3

LaO s B[]

idModel3. BugPosition(ind0): stupidModel3.BugPopulation(ind1):nbB

Figure 6.13: The control panel view.

CHAPTER 6. THE CONCRETE MODEL EDITOR 49

Existant
Discrete 2 DSpaceView(outl)

Nouveau

Sortie: | Discrete2DSpac... &

(Nouveau y (Existant \| (Annuler b

Figure 6.14: The creation dialog for an output view.

6.4.1 Drawing an output view

To draw an output view in a given place it is enough to click on the corresponding
button and then at the place where to put the output view, or to right click at
the desired place to show up the same toolbar as a popu menu. Aew dialog
is opened as illustrated in the gure 6.14.

This dialog is composed of two parts:

the upper part lists all the output views available in the selected control
panel. Selecting one of these and typing either return or pusing the
Existing button shall draw the corresponding output view at the sele¢ed
place.

the down part is used to create a new output view with a drop dow menu
from which to select one of the output view de ned in the concrete model
graph panel (see 6.3).

6.4.2 Deleting an output view

An output view can be deleted by selecting it and selectingRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output view must be removed fromthe control
panel:

if yes, the output view is removed both from the drawing and the list of
output views de ned for the control panel;

otherwise, only the drawing is removed but the output view remains un-
changed.

6.4.3 Drawing a parameter editor

To draw a parameter editor in a given place it is enough to clik on the corre-
sponding button and then at the place where to put the parameer editor or to
right click at the desired place to show up the same toolbar ag popu menu. A
new dialog is opened as illustrated in the gure 6.11.

This dialog is composed of two parts:

CHAPTER 6. THE CONCRETE MODEL EDITOR 50

Existant

StupidModel3.BugPosition(ind0):seed
StupidModel3.BugPopulation(ind 1):nbBug

Nouveau

Individu: | Space@6814623 S

Parametre: | nbCol

ft Nouveau) [Existant Annuler \

Figure 6.15: The creation dialog for a parameter editor.

the upper part lists all the parameter editors available in the selected
control panel. Selecting one of these and typing either rettn or pushing
the Existing button shall draw the corresponding parameter editor at
the selected place.

the down part is used to create a new parameter editor with twodrop
down menus:

the rst one is for selecting one of the individuals created n the
concrete model panel (see 6.1.1);

the second one is for selecting one of the attribute to edit ofthe
individual.

6.4.4 Deleting a parameter editor

A parameter editor can be deleted by selecting it and selectig Remove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the parameter editor must be remove from the
model:

if yes, the parameter editor is removed both from the drawingand the list
of parameter editors de ned for the model;

otherwise, only the drawing is removed but the parameter edior remains
unchanged.

Chapter 7

Some examples

7.1 The rolling ball example

As an example, we shall model a simple system composed of oraling ball and
a kicker. This example allows the illustration of a combination of continuous
and discrete time:

the rolling ball is submitted to uniform movement described by the fol-
lowing equations:

X(t)= Xo+ vx ty(t)=yo+ v, t

at random time, the kicker computes a random two-dimension& vector
< kx;ky > which is sent to the ball to change its trajectory in the following
way:

Vx = Wy + K vy = vy + Ky

7.1.1 De ning the conceptual model

The conceptual model will be composed of two categoriesRollingBall and
Kicker . The RollingBall is characterized by four attributes: two for the initial
position (x0 and y0 corresponding toxy and yg) and two for the speed {x and
vy corresponding tovy and vy). The Kicker is characterized by one attribute:
the seed of its random generator used for the time of kickinghe ball and the
generation of the random vectot.

If we want to visualize the position of the ball, the event-based nature of the
simulation will only be able to provide state changes when tle ball is kicked.
To see the ball rolling between two successive kicks, we hawe sample the
trajectory. In order to do that, a third category is added to t he model to
sample the trajectory by asking at each xed time step to the ball its position.
The resulting ontology in shown in gure 7.1.

In addition, you have the de nition of three relations:

kicked which a relation of Kicker to send a kick to aRollingBall . Note
that a Kicker can kick simultaneously any number of balls.

1To put the seed as a parameter is recommended if one wants to co ntrol the outcome of
the simulation, i.e. to produce exactly the same result for e ach simulation.

51

CHAPTER 7. SOME EXAMPLES 52

example.RollingBall ‘
example.Kicked <<NativeState>> |ghserver
<<NativeState>> |kicked observedy“xample.Observer
- 0 <<MativeState>>

seed y

s . :

%0 | |

Figure 7.1: The conceptual model for a kicked and observed fling ball.

Nom
Abstrait: {3
Super type: | example.EntityType =]

| Attributs Relations Comportement !

Déclarations d'attributs

Attributs locaux (=) Attributs hérités ()

Clé Cardinalité Type

y0 1 Double

v 1 Double

vy 1 Double

%0 1 Double
_ Ok) (Cancel

Figure 7.2: The conceptual model for a rolling ball with the atribute panel.

observer which is a port of RollingBall to send its position to an ob-
server (and it can have as many observers as it wants).

observed which is a port of Observer to send a request for position (it
will always be a logical in uence, of course).

The parameters can be edited (added, changed or removed) tbugh the
category editor as shown in the gure 7.2.

The relations (i.e. the de nition of the relation name, cardinality and type)
can be either drawn through the graphical editor or entered nh the category
editor dialog as in gure 7.3. If the relation are de ned by th e category editor,
they will not show up in the graphical editor. They can be visualized by drawing
an arc and specifying an existing link as shown in gure 7.4.

At that stage, the structure of the conceptual model (i.e. the ontology) is
entirely de ned: the categories, attributes and relations.

7.2 De ning the dynamics

For de ning the behavior, you have to de ne:

the incoming and outgoing in uences;

CHAPTER 7. SOME EXAMPLES

Nom RollingBal
Abstrait: A
Super type: | example.EntityType e

! Attributs Relations = Comportement |

Déclarations de relations
Relations locales @ Relations héritées ()
Cle | Cardinalité | Type
=

observer Observer

Ok Cancel

Figure 7.3: The rolling ball category with the relations panel.

Existing-
kicked:*
New

Nom
Relation

Arité: 2
Cardinalité

(" New \ (Exislmg 3 f’ Cancel W

Figure 7.4: De nition of an arc from an existing relation de

nition

53

CHAPTER 7. SOME EXAMPLES 54

Figure 7.5: The rolling ball category with the probes panel

the probes;
the M-DEVS functions.

We assume thatRollingBall receives kicks and observation requests and sends
positions, Kicker sends kicks and the Observer sends observation requests and
receives positions. The checking of the consistency betweewhat is sent or
received is currently very loose but can be reinforced by setting the verify
check-bon in the scheduler. In a future release the possiliy to check for
model consistency when de ning the conceptual model will beenforced (at least
optionally).

We shall de ne two identical probes: one for theRollingBall to signal the
state change (new x0, y0, vx and vy, see gure 7.5) and one forhte Observer
for the ball position, each time it receives the actual coordéhates.

These declarative parts of the dynamics being made, we haveotfocus on
specifying each of the function of the corresponding M-DEVSnodel. The gure
7.6 shows how to de ne the initialization of the rolling ball. In the shown panel,
the LanguageState behavior has been selected, which allows to specify the
behavior with script languages. In this case, the Java scripng language has
been selected Javalnterpreter).

Note that we distinguish the attributes and the state of the model. The at-
tributes de ne the structure of the ball for an external observer and corresponds
semantically to the speci cation of its initial state. The s tate itself changes con-
tinuously, spontaneously or in response to incoming in uertes. In this case the
state is created and initialized from the parameters.

The gure 7.7 shows the code for handling incoming external m uences.
The principle is to loop through the set of inuences (put in the variable
externallnfluences), to check its type for each one and compute the state
change accordingly. Note that after the state change, a prob value is issued to
update all the possible visualization windows.

CHAPTER 7. SOME EXAMPLES 55

Figure 7.6: The rolling ball category with the initialize pa nel

The user is asked to further explore the model which is availele as an
example, to see how the behaviors are de ned in the various sipting languages.

7.2.1 De ning the concrete model

As said before, the de nition of the structure and dynamics is part of the concep-
tual model and cannot be run directly. From the conceptual madel, a concrete
and simulatable model can be instantiated. You have to open aoncrete model
editor. At the top of the right panel, you have a list of conceptual models you
can take your de nitions from. The gure 7.8 shows a window in which a model
has been built by creating an instance of each of the categas (an instance of
clock has been added to de ne the time rate at which the obserer samples the
rolling ball). In this gure, each port is linked to the prope r entity. The drawing
panel uses a modi ed UML object diagram. The links are named yhich is not
the case in UML). As in UML, the name of the instances is optioral and for
documentation purpose only.

The actual structure of an individual is not only composed by its links but
also by the values of its attributes (interpreted as the spetcation of the initial
state of the simulation). By editing an individual, the dial og of the gure 7.9
appears where you can change the name of the individual (optinal), trace or
untrace the individual?, de ne or change the attribute values.

2while tracing in the scheduler traces the posted and sent in uences, tracing an individual
traces the call to the M-DEVS functions.

CHAPTER 7. SOME EXAMPLES

Figure 7.7: The rolling ball category with the external tran sition panel

Figure 7.8: The concrete model as an instance of the concepimodel.

56

CHAPTER 7. SOME EXAMPLES 57

Figure 7.9: The edition dialog for an individual.

Figure 7.10: The view on the rolling ball state

Once all the model has been instantiated and all the parametes de ned (a
further version should also check for the model completena$, the user can open
the scheduler, select the model to run, initialize and run it either step by step
or in a single run until the end date is reached as described imore details in
the chapter 8.

In addition, a visualization window can be opened. For examfe, a pos-
sible view looks like the gure 7.10 and is updated each time e individuals
chang€. The top left panel displays the clock value, the top right panel displays
KICKED for some time each time the kicker is issuing a kick, the bottom left
panel displays the rolling ball state (updated only when kidked) and the bottom
right panel displays the actual position of the ball at each time step.

Such a display cannot be created interactively yet. A numberof visualiza-
tion items can be created, positioned within a control boardand linked to the
individuals receiving its probes and using them to update the visualization. An
editor for such a control panel (including the possibility to change the parame-
ters shall be available in a near future.

7.3 The stupid model

Coming soon.

3Sorry if we did not program a panel to visualize trajectories yet.

Chapter 8

The scheduler

This chapter is really about running simulations. The concrete models one
wants to run are available from the drop down menu on the top ofthe scheduler
window (see 8.1). All the models de ned in the concrete modekditor are shown
in this drop down menu to select from. Additionally, les can be loaded within

the scheduler if saved in the scheduler format from the conate model editor.

This possibility is o ered to deliver turn key models to be run independently of
all the previously described editors.

A concrete model has to be selected from the list on the left. Te initialize
button shall actually generate the simulation model out of the concrete model
description. The rst step shall initialize the simulation model (the time shall
remain at 0). Further steps shall advance the time dependingon the closest
scheduled next date.

In the scheduler menu, the rst item opens an inspector to vigialize the list
of all created entities (see 8.2). This list is updated durirg the simulation to
re ect the current list of entities. Clicking on an entity op ens an entity inspector
to monitor what is going on in the given entity (see gure 8.3). The panel is
divided in four panes:

the rst pane lists the current parameters of the entity and t heir values;

the second pane is the list of current ports with the list of enities their
are associated to;

the third pane is used for managing the probe observers;

nally the fourth pane displays the warning messages when neessary.

Figure 8.1: The scheduler window.

58

CHAPTER 8. THE SCHEDULER 59

Figure 8.2: The main inspector window.

The most important pane certainly is the third pane because i monitors
what is going on inside of the inspected entity. It is composd of a drop-down
menu for selecting a probe observer and a panel to display thprobe observer
when it is displayable. By default, two probe observers are @ailable:

the probe view which displays the probes when received one taf the
other. A button to clear the display is available if necessay;

the probe output which send the probes to a le. When selectig the
probe observer, a le name as well as a separator string is ask. The
resulting le can be loaded in excel or any similar tool.

At each time step it is possible to open a window showing the stucture of
the simulated model as a graph where each node is an entity andach edge is
a connection between the entities. The corresponding windw is shown in the
gure 8.4 and is made of three parts:

The upper part is a drop down menu to select the kind of graph maipu-
lation: either transforming for changing the place of the gaph, zoom it in
or out, etc., or picking for selecting one node and move it onhe screen;

The graph itself;

A button to switch between two algorithms to layout the graph. Choose
the one which seems more appropriate to visualize the model.

CHAPTER 8. THE SCHEDULER

Figure 8.3: The entity inspector window.

60

CHAPTER 8. THE SCHEDULER

Figure 8.4: The graph of the simulated model.

61

Appendix A

Introduction to Scheme

Scheme is a functional language close to Lisp but with a purersemantics.
Roughly speaking only two constructs are provided in scheme

the function (called procedure in the Scheme community) written: (lambda
<parameters> <body>) where parameters is a list of parameter names
and body is a sequence of expressions.

the application written (<function> <arg :>:::<arg,>) where function
is a function as de ned before andarg; are expressions.

Of course, anexpressionis either a function or an application. This seems overly
simplistic but it has been shown that it is enough to express ay computation
one could dream of. Nevertheless, the resulting syntax wodlbecome unreadable
for any reasonable computation. The simplest way to overcora this problem
is to provide the possibility to associate names to expresens with the form:
(define <name> <expressions>) . A number of names have been prede ned
in Scheme for all the current arithmetic operations as well & the operations on
very common data structures.

By the way, define is not a function name but the name of a syntactic
form which is transformed behind the scene in a proper appliation. The set
of possible syntactic forms can itself be extended, parametizing the Scheme
interpreter with high level constructs at will (not explain ed in this introduction).

A structure or object is also called a literal expression is of the form{quote
<something>) or (alternatively) '<something> . The somethingis either:

a number

#t and #f

a character #n..
a string "..."

a symbol

a pair (<something 1> . <something ,>) or a list (<something 1>: : :<something,>)

a vector #(<something ;>: : :<something,>)

62

APPENDIX A. INTRODUCTION TO SCHEME 63

The rst four categories do not need the quote because they s$keevaluate, i.e.
their value is themselves.

Finally, an additional power is acquired by the relationships between struc-
tures (or objects) and expressions. Of course, expressiotransform structures
into structures (it is what functions or all about). The nice thing is that (eval
<exp>) transforms the structure produced by the expression into anexpres-
sion...and computes its value as well. Therefore, one can e programs pro-
ducing programs which are further executed.

This appendix is not suppose to give a full course on Scheme bjust pro-
vide a summary of the most common de nitions for reference, mcluding the
de nitions introduced for use within Mimosa.

A.1 Control syntax

As in any language, there are some constructs for the usual otrol structures:
the sequence, the conditional and the loop.

(define <symbol> <exp>) the de nition
(set! <symbol> <exp>) to change the de nition
(begin <exp 1>:::<expn>) the sequence of expressions

(if <exp> <exp tue > <€XPaise >) the conditional

(cond (<exp 1> :::):::(else :::)) | the multiple contitional
(or <exp 1>:::<expn>) sequence until true
(and <expi>:::<expn>) sequence until false

The loop is more complicated with the form(do (<iter 1>:::<iter ,>) (<cond>

::7) :::) whereiter ; is a variable of iteration of the form (<var ;> <expni >
<eXpstep >) With a variable name, an initialization expression and a st com-
putation expression, the condition expression must be truefor stopping the
iteration and the corresponding expressions are computedcaordingly.

Finally, one must introduce the binding construct to create local variables
for various purposes:

(let ((ssym 1> <exp>) :::) <expi>:::) parallel binding
(let* ((<sym 1> <exp>) :::) <expi>:::) sequential binding
(letrec ((<sym 1> <exp>) :::) <exp;>i::) complete binding

The main di erence is that the association of values to symbds are avalaible
from the body alone in the rst case, directly after the de ni tion (and then for
the next de nitions) in the second case and from the start in the third (allowing
self reference).

A.2 Booleans

There are two booleans #t and #f which are two symbols which ewaluates to
themselves. Apart from and and or, we also have the following functions:

(boolean? <exp>) tests if boolean

(not <exp>) the negation

(eq? <expi> <exp>) strict equality

(eqv? <expi> <exp>) slight extension of strict equality
(equal? <exp 1> <exp>) | recursive (or structural) equality

APPENDIX A. INTRODUCTION TO SCHEME 64

A.3 Numbers

Scheme recognizes the integers (e.g. 51236457), rationfdsy. 6235645/23672573),
reals (e.g. 4.6565e-3) and complex numbers (e.g. 3+5i). Thmain distinction

is between exact and inexact representations of these. Thergde ned functions
are;

(number? <exp>)
(complex? <exp>)
(real? <exp>)
(rational? <exp>)
(integer? <exp>)
(exact? <exp>)
(inexact? <exp>)
(zero? <exp>)
(positive? <exp>)
(negative? <exp>)
(odd? <exp>)
(even? <exp>)
(= x1::3)

(< x1::3)

(> x1::)

(<= x1::7)

(>= x1::2)

(abs x)

(min x1::3)

(max x1::3)

(+ z1::2)

(- z1::2)

* z1::2)

(/ z1::2)
(quotient np ny)
(remainder ni ny)
(modulo ni ny)
(gcd nyp::)

(lecm nyp::3)
(numerator Q)
(denominator Q)
(floor x)
(ceiling x)
(truncate x)
(round x)
(real-part 2)
(imag-part z)

tests if number

tests if complex

tests if real

tests if rational

tests if integer

tests if exact

tests if inexact

tests if zero

tests if positive

tests if negative

tests if odd

tests if even

equality

monotonically increasing
monotonically decreasing
monotonically non decreasing
monotonically non increasing

the absolute value of the number
the min of the numbers

the max of the numbers

the sum of the numbers

the di erence of the numbers

the product of the numbers

the quotient of the numbers

the quotient of the numbers

the remainder of the numbers
the modulo of the numbers

the greatest common divisor of the numbers
the lowest common multiple of the numbers
the numerator of the rational

the denominator of the rational
the oor of the real

the ceiling of the real

the truncate of the real

the round of the real

the real part of the complex

the imaginary part of the complex

As well as most transcendant functions.

A.4 Dotted pairs and lists

The most common data structure in Scheme is the dotted pair witten (<left>

<right>)

. Alist (<elt 1> <elt > :::

<elt ,>) is nothing but (<elt > .

APPENDIX A.

(<elt o> . i (<elt > .
following functions:

INTRODUCTION TO SCHEME

65

() :::) where() is the empty list. We have the

(pair? <exp>)
(null? <exp>)
(list? <exp>)
(car <exp>)
(cdr <exp>)

(set-car! <pair> <obj>)
(set-cdr! <pair> <obj>)
(list <obj 1> ::: <objp>)

(length <list>)

(reverse <list>)

(list-tail <list> <k>)

(list-ref <list> <k>)

(append <list 1> ::: <list >)
(memg <object> <list>)
(memv <object> <list>)
(member <object> <list>)

tests if dotted pair

tests if empty list

tests if empty list or dotted pair
left of dotted pair or rst element of list
right of dotted pair or rest of list
modi es left of dotted pair

modi es right of dotted pair
creates a list

length of a list

reverse of a list

the k-th rest of a list

the k-th element of a list
append of lists

member using eq?

member using eqv?

member using equal?

An additional structure is the so-called a-list which is a list of pairs whosecar is
considered as a key and theedr as the associated value. The related functions

are;

(assq <object> <list>)
(assv <object> <list>)
(assoc <object> <list>)

has key using eq?
has key using eqv?
has key using equal?

and returns the found pair if any, #f otherwise.

A.5 Mimosa primitives

For Mimosa, we added three very common control structures fo better read-

ability:

(when <cond> <exp>:::<exp,>)

(for (<var> <list>) <exp

(unless <cond> <exp1>:::<expp>)
1> <expn>)
(times (<var> <nb>) <exp 1>:::<exp,>)

executes if #t
executes if #f
a simple loop over a list

Some functions are provided to access the Mimosa random genagor:

(newRandom <seed>)

(nextBoolean <random>)
(nextint <random> <n>)
(nextDouble <random>)

creates a random generator
generates a boolean randomly
generates an integer from O to n
generates a real from 0 to 1

Finally, the access to the DEVS entity functionalities are provided as follows:

the variable self

is linked to the current Java state;

for each parameter, the variable with the same name is de nedwith the
associated value within the global context. It can additionally be accessed
through the function (getParameter <sym>) ;

when a script for a DEVS function is called, the global varialde time is
linked to the duration elapsed since the last internal or exernal transition;

a simpler loop repeated nb times

APPENDIX A. INTRODUCTION TO SCHEME 66

each inuence is a Java object whose structure can be accesbby the
following functions:

(is <influence> <name>) #t if the in uence has the given name
(contentOf <influence>) the list of arguments
(getAllinfluences) the list of incoming in uences
(getinfluence <name>) the list of in uences of the given name
(getinternalinfluence) the internal in uence

the various events can be posted with the following functiors:

(port <sym> njp:::np) creates a port
(sendExternal <port> <sym> <exp 1>:::<exp,>) | post an external event
(sendinternal n <sym> <exp>:::<expn>) post an internal event
(sendLogical <port> <sym> <exp 1>:::<expn>) post a logical event
(reply <influence> <sym> <exp 1>:::<exp,>) reply to an in uence
(sendProbe <sym> <exp>:::<expn>) post a probe

A port can be a string or a symbol when there is no indices.

Finally the structure changes can be made through the folloving functions:

(portRef <port 1>:::<port ,>) creates a port reference

(pair <sym> <exp>) creates a pair for the parameters
(parameters <pair 1>:::<pair ,>) creates parameters from the pairs
(addPort <portref> <category> <traced> <parameters>) creates a new entity

(linkPort <portref 1> <portref ,>) links referenced ports
(removePort <portref>) removes a references port

Bibliography

[1] http://bergel.eu/athenal.

[2] http://herzberg.ca.sandia.gov/jess/.

[3] http://jscheme.sourceforge.net/.

[4] http://www.alice.unibo.it:8080/tuprolog/.
[5] http://www.beanshell.org/.

[6] http://www.gnu.org/software/kawa/.

[7] http://www.jython.org/.

[8] Jacques Ferber and Jean-Pierre Miller. In uences and raction: a model
of situated multiagent systems. In Mario Tokoro, editor, Proceedings of
2nd International Conference on Multi-Agent Systems pages 72 79, Kyoto,
Japan, December 1996. AAAI

[9] Jean-Pierre Miller. The mimosa generic modeling and simatiion plat-
form: the case of multi-agent systems. In Herder Coelho and 8rnard
Espinasse, editors 5th Workshop on Agent-Based Simulationpages 77 86,
Lisbon, Portugal, May 2004. SCS.

[10] Jean-Pierre Miller. Mimosa: using ontologies for modéng and simulation.
In Proceedings of Informatik 2007 Lecture Notes in Informatik, September
2007.

[11] Jean-Pierre Miller. Towards a formal semantics of evarbased multiagent
simulations. In Proceedings of the Multi-Agent Based Simulation Workshop
Estoril, Portugal, May 2008.

[12] Jean-Pierre Miiller and Pierre Bommel. An introduction to UML for mod-
eling in the human and social sciencesvolume Agent-based Modelling and
Simulation in the Social and Human Sciences, chapter 12. Bawell Press,
2007.

[13] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Mod-
eling and Simulation. Academic Press, 2000.

67

