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Chapter 1

Introduction

Mimosa! is an extensible modeling and simulation platform ([9]). It is aiming
at supporting the whole modeling and simulation process frm the conceptual
model up to the running simulations.

The modeling process is assumed to be constituted iterativig of the following
stages:

The conceptual modeling stage: it consists in elaborating the ontology of
the domain as a set of categories, their attributes and theirrelationships,
either taxonomic or semantical. In short, this stage is abot de ning the
vocabulary used to describe concrete situations (the wordso say it).

The dynamical modeling stage: in order to describe the dynamics of the
categories de ned in the rst phase, one must decide on the chice of
paradigm (di erential equations, straight scripting, age nt-based, etc.) for
each category. The paradigm is described using a built-in m@-ontology.
Given the choice of dynamical paradigm, one must specify theossible
states and state changes according to the chosen paradigm.dditionaly,
one can de ne how to initialize the states and how to observeti

the concrete modeling stage:  the previously described stages de ne the vo-
cabulary in which the concrete model(s) can be described as set of indi-
viduals linked to each other and with given attribute values.

the simulation speci cation stage: apart from the structure of the model
to simulate as described in the previous stage, an importantvork consists
in deciding which attributes can be considered as xed paraneters, which
ones can be manipulated by the user, how to output the obsenfaes of
the model (plots, grids, databases, statistical tools, etg

the simulation stage: it consists in running the simulations themselves by
creating the simulation model to run as a set of entities linked through
ports by connections, by associating the means to specify # input pa-
rameters and to handle the outputs of the simulations and by atually
simulating it.

it is the french acronym for Méthodes Informatiques de MOdé lisation et Simulation
Agents : computer science methods for agent-based modelin g and simulation
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In the following, we shall describe these stages in turn withthe associated
concepts. But before, we shall shortly introduce how to run he system.

Mimosa is also implemented to be multi-lingual. For the time being only
english, french and spanish are provided. The user's manua$ only in english.
Most of the explanations still apply even if the menus and titles are not the
same.

1.1 News

The changes from version 1.2.3 are the following:

1.
2
3
4,
5

6.

various options for running Mimosa (see 2.2);

. a new button in the scheduler window (see 2.5);

. a new menu item for generating HTML documentation (see 4.}

a new function to stop the simulation programmatically (see 5.3.1);

. a number of probe observers are now described (but not allfadhem, see

6.3.2).

the stupid model example [13] is in the course of being desbed (see 7.3).

The changes from version 1.2.4 are the following:

1.
2.

the smalltalk scripting language is now working (see 5.2).

for space and time e ciency, the in uences and probes conént has been
coded as arrays instead of vectors. The sections 5.2.3 and351 have been
slightly changed accordingly.

the stupid model examples 4 to 8 [13] have been added (see3Y. To be
read carefully to learn about using Mimosa.

the implementation packages have been extensively re-ganized for a
clearer understanding of the code. This change does not coem this
user's manual but only the generated javadoc for the programmers.

The changes from version 1.2.5 are the following:

1.

most importantly, the initialization process has been fatored out from
the dynamics. It is now possible to specify how to initialize the simu-
lation model independetnly of the dynamics. For the time beng it can
be specied at the category level and at the individual level A further
improvement concerns the possibility to also vary how to geerate the
simulation model beforehand.

. the possibility to group a number of models (conceptual, oncrete and

simulation) into projects as well as browsing these projedt in an easier
way.

the mereology browser, never completely implemented, tsabeen removed
de nitely.
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4. the implementation packages have been again extensivehg-organized for
a clearer understanding of the code. This change does not coern this
user's manual but only the generated javadoc for the programers.

5. the so-called plugins are now distributed separatly.

6. installers for Windows, MacOSX and linux are now provided



Chapter 2

Running Mimosa

2.1 Downloading Mimosa

Mimosa is a free software under LGPL license and CIRAD copyght. The
source and code is available on SourceForge.

If you are only interested in the program itself, you can go tothe Mimosa
site on SourceForge: http://sourceforge.net/projects/mimosa . You just
have to follow the link dowload to go to the page where you ca download the
software. How to run it is explained in the next section.

If you are interested by the software itself (or even want to ©ntribute), feel
free to access it via the CVS server at:

pserver:anonymous@mimosa.cvs.sourceforge.net/cvsroo  t/mimosa.

The latest version is available at the head of the project. The tagged versions
versionl.0beta to versionl.2.5b can be dowloaded but, of course, are not
fully up to date. If you want to be a developer, just create an acount on
SourceForge and send a message to:

jean-pierre.muller@cirad.fr
to give the name of your account and to explain what you want todo.

2.2 Launching Mimosa

Mimosa is written in Java 1.5 and can be run on any platform (bah hardware
and operating system) as long as at least Java JRE 1.5 is instied.
For the time being, Mimosa is provided as a folder containing

mimosa.jar which is the main program to be launched by typing java
-jar mimosa.jar  or by double-clicking on it if your OS has Java inte-
grated in it.

alibs folder containing the libraries necessary for running Mimea.

an example folder containing some examples to load within Mimosa for
exploring its functionalities.

a documentation folder for the documentation (it should be soon or later
a user's manual (this one), a programmer's manual and the fuljavadoc
hierarchy).
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MIMOSA

WELCOME IN MIMOSA

Choose your language:

) francais
() anglais
() espagnol

(oK)

Figure 2.1: The welcome window

a plugins folder contains so-called plugins which are either hard-cded
examples or additional dynamical speci cation paradigms. Nowadays all
the extensions of Mimosa are distributed in this form.

When launching Mimosa, a rst window is opened to choose youtlanguage
(see gure 2.1). The window shall appear in your operating sgtem language as
well as the choice by default. However, depending with whom gu are working,
any other available language can be selected. Thereafter, umber of windows
appear (see 3). In the top the windows for editing the conceptal respectively
the concrete models. In the bottom left, the window to contrd the scheduler
and in the bottom right, an output window where a number of information are
displayed. The next section describes the menus in detail.

If the latter is the standard and most common use of Mimosa, a omber of
options are now available for running it and available from the command line:

java -jar mimosa.jar  launches Mimosa as described before;

java -jar mimosa.jar xxx.sml launches Mimosa with only the sched-
uler and output windows open and the given simulation model &eady
loaded. This option is used for delivering turn key models.

java -jar mimosa.jar -nw xxx.smi launches Mimosa without the user
interface and can be used for running simulations in batch mde.

One can typejava -jar mimosa.jar -h  to know about further options.

2.3 The menus

Four menus are provided:

File:  this menu provides access to all the functionalities relatd to the window
which is active or to open new windows:
New: is used to open any of the following new windows:

Project browser:  opens a window for managing and editing the
projects as a set of conceptual, concrete and simulation maads;

Conceptual model browser: opens a window for editing concep-
tual models;
Concrete model browser: opens a window for editing concrete

models (as instances of conceptual models);
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Edit:

Scheduler:  opens a scheduler control window for running the sim-
ulation models.

Open...: loads the content of a le depending of the selected window or
item if in the project browser. The le must contain an approp riate
XML representation. The kind of content which can be loaded de-
pends on the active window. If it is a conceptual model editor only
a saved conceptual model can be loaded. If it is a concrete met
editor, only a saved concrete model can be loaded. In the lastase,
be sure that the conceptual models used by the concrete modékave
been loaded beforehand. Finally, if it is a scheduler window only
the XML les especially generated from the concrete model eidor
for this purpose can be loaded.

Save: saves the model currently edited in the active window in the @&so-
ciated le (the last le it was saved to). If it was never saved before,
a le chooser dialog opens.

Save as.... saves the model currently edited in the active window in a le
to specify regardless of the last save (or open).

Save as image.... saves the displayed graph (if any) as a picture in a
number of proposed formats.

Print...:  prints the content of the current window if applicable (it is ap-
plicable when a graph is displayed).

Refresh...: this item is only used if you de ned a new meta-ontology in

a so-called plugin and you want to dynamically reload the plgins
de nitions for further use without relaunching Mimosa.

this menu provides the contextual editing functionalities provided for
the selected window or object. This menu does not appear whebrowsing
projects (yet). Any editor provides at least the following functionalities
in addition to the usual cut, copy and paste:

Export documentation...: to generate an html le describing the con-
tent of the selected window or item in a human readable form;

Add.... to add a new object (categories, individuals, states, etc;)

Change...: to change the name of an object when there is an associated
name;

Edit..:  to edit the structure of an object (the structure depends on the
object and, sometimes, includes the associated behavior geription);

Remove: to remove the selected object(s);
Clear...: to remove all the de ned objects.

Window: this menu provides quick access to the opened windows. One tifese

is always accessible even if not shown by default:

Output:  to display the output window which is a console containing: a
panel for user speci ¢ output, a panel where error are displged and
a panel where the traces are displayed.

1This possibility is provided to create stand-alone models w  ithout the associated conceptual
models.
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Ontologie: example(example.xml)

12

| DefaultOntology [ Graphe = Catégories  Types d'influences |

(e RS = R S N ]

FRRSESE

clocked
example.Clock |-
<<NativeState>>

lexample. PythonClock
<

example.HardClock
<<Clock>>

example.SchemeClock
<<l

example JavaClock
<<l

example. EntityType
<<NativeState>>

example RollingBall

example.Kicked
<<NativeState> >

seed

<<NativeState>>

observer

kicked

yo
vx
e
x

Observer
<<NativeState>>

example.HardKicker
<<Kicker>>

example JavaKicker
L

example.SchemeKicker
<<l

lexample. PythonKicke
<<Agent>>

<<Observer>>

\< <Languagestate>> ‘

seed

example.

example.

> ‘

<=L

<<l

<<l

Figure 2.2: The conceptual model editor as an example of an &dr window

Help: this menu gives access to a number of tools for debugging:

Statistics:  displays in the output window some statistics about the data
structures used by the scheduler: number of created entitie and
usage of the in uences;

Prede nitions:  displays in the output window the prede nitions as de-
ned in the scripting mechanism;

Show content:  displays in the output window the content of the tables
created by the various editors which are the data structuresbehind
the scenes;

Script interpreter: displays a window in which the user can enter ex-
pressions in any of the provided scripting languages in ordeto test
the code. The results are displayed in the output window wherpush-
ing the eval button.

2.4 The editor windows

Each editor window has the same structure (see the gure 2.2) It is divided in
two vertical panels.

The left panel contains the list of existing models (either @nceptual or con-
crete) referenced by their names, or the projects hierarclés. In Mimosa, these
models are also referred to as ontologies. One can select aristing concep-
tual model (in the conceptual model editor) or concrete modé (in the concrete
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Ontologie: example(example.xml)

EDEh”‘IO“mmW | Graphe Catégories  Types d'influences |
[lexample

SchemeObserver
PythonKicker
JavaClock
Kicked
SchemeClock
Observer
JavaRollingBall
EntityType
HardKicker
JavaObserver
RollingBall
JavaKicker
HardClock
Clock

. SchemeRollingBall
SchemeKicker
HardRollingBall
PythonRollingBall
PythonObserver
HardObserver
PythonClock

(@] >

Figure 2.3: The category list editor of ontologies

|i : : O~ BB y % \ Rﬂ_\kll’anneau.

Figure 2.4: The graphical editor buttons

model editor) or any of these (in the project browser) by leftclicking on its
name. By right-clicking on the panel, one accesses a popup me where it is
possible to add a new model, open an existing one, change itame or delete
it. It is highly recommended to create a new model each time oe is describing
a di erent structure for modularity and reuse reasons.

The right panel is editor speci c and usually allows multiple views of the
same model or parts of it. In most cases a graphical view is praded. In the
gure 2.2, there are three editor panels. The shown one is thegraphical editor
panel. The other two are used to edit categories and in uenceypes (see 5.2.3)
as lists. The gure 2.3 shows the list editor where it is also wssible to add,
change the name, edit and remove categories.

On the top of any drawing view, there is a toolbar with a number of model
speci ¢ buttons. These buttons are speci ¢ and shall be destbed in the related
chapters. These editing buttons are also available as a pogumenu when right-
clicking in the drawing area. The last button is a drop down menu to manipulate
the editor window (zooming in and out, reducing, enlarging ¢ hidding/showing
the grid for objects alignment). The gure 2.4 shows the buttons for editing
rather complex conceptual models (just for illustration).

Any created object can be edited by double-clicking on it. Onright-clicking
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Scheduler (0)

Add concrete model: DefaultModel +

Scheduler

"1 Tracing || Checking [ Graphing

State Current date Stop date

UNKNOWN 0 0

'f_Resel Y r_lmlialize Y € Step k] f Run ) ( Stap ) ( Close )

Figure 2.5: The scheduler window

on an object, one can access a popup menu for editing (same asuble-clicking)
or deleting the object.

2.5 The scheduler window

On the top of the scheduler window (see 2.5), the list of exishg models is
provided for inclusion within the list of available models to the scheduler. It
is also possible to add additional models to simulate by loathg them from
scheduler speci c les. This possibility is used when deliering turn key models.

The bottom of the scheduler window is divided in two vertical panels.

In the left panel, there is the list of existing models (as ad&d from the model
editor or from les). Exactly one model must be selected to berun.

The right panel is divided in three horizontal panels:

1. the top panel has two check boxes for debugging:

Trace: toturntracing onando . Ifthe trace is on, the in uences pos ted
and sent are displayed in the trace window.

Verify:  to turn verifying on and o . If the verify is on, all the declar a-
tions (names, types and cardinality) are checked during simlation.
It slows down the simulation quite a bit but it is very useful for
checking whether the behavior is consistent with the declaations.

as well as a button to visualize the simulated structure as a gaph. Cur-
rently, the graph is not updated while running the simulation. Therefore,
the button has to be pushed each time, one wants to visualizehte current
state (to be improved later on).

2. the middle panel displays the state of the simulation (unknown, initialized,
running or stopped) and the current date (in global time). An end date
can be entered to specify when to stop the simulation. The ca simulation
system being event-based, this is NOT a number of steps but ly an
end date.

3. the bottom panel has buttons for controlling the simulation:

Reset: for creating the simulation model and control panel out of its
description (either le or concrete model).

Initialize: for putting the model in its initial state. The current date i s
always set to O.
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Run: to run the simulation until the provided end date is reached. If the
end date is less or equal to the current date, nothing happens

Step: to run one cycle of the simulation. All the in uences schedukd at
the next date are executed.

Stop: to stop the simulation before the end date is reached. The cuent
cycle is always completed (and cannot be interrupted).

Close: to close the possibly opened outputs ( les or data bases) a#ir the
simulation has been stopped.

Each scheduler window is associated to its own thread, so the is a pos-
sibility of having several scheduler window opened to run seeral simulations
simultaneously.

2.6 The project window

It is possible to group a set of related models (conceptual,ancrete and simula-
tion models) into a single project. Each model is saved in a gmrate le and the
project records the set of les which are grouped together. he project window
maintains a list of loaded projects, each project being compsed of conceptual,
concrete and simulation models.

The gure 2.6 illustrates the structure of the project window. The left
vertical pane contains a hierarchy made of a list of projectseach one made of a
list of conceptual, concrete and simulation models respestely. Each conceptual
model contains a list of categories. Each concrete model ctains a list of
individuals and outputs. By left-clicking on each of these tems, one has access
to a corresponding editor if available in the right part of th e window. It is the
case for a conceptual model (see gure 2.6) or for a single cagory (see gure
2.8).

Left-clicking on a simulation model gives access to the pardor running the
simulation as well as its associated control panel (see 8). fe resulting display
is illustrated in the gure 2.7.

Right-clicking on an item in the left pane gives access to a aaceptual menu
for creating, opening, saving and deleting whatever is apppriate depending on
the clicked item:

on Projects it is possible to manipulate the projects list.

on Conceptual modelsit is possible to manipulate the list of conceptual
models (creating or opening new models).

on Concrete modelsit is possible to manipulate the list of concrete models
(creating or opening new models).

on Simulation models it is possible to manipulate the list of simulation
models. Creating one gives access to the list of available noret models
in the project. Open one allows to load a stand-alone simuldbn model.

on a speci ¢ conceptual model, it is possible to create new d¢agories by
entering just their name.
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Project browser (0)

File Window Help

Bl Projects ! Graph Categories Influence types !
¥ [l ExampleProject
¥ [ Conceptual models
B Concepuaioen |
D ConceptualModell.A
[”| conceptualModel1.B
» [ ConceptualModelz
¥ [ Concrete models
[ ConcreteModell Cnn(eptuaandEll.A*
¥ [ Simulation models <<NativeState>>
[ simulation(ConcreteModel1)

: D \\\ E \4 \ IPanE\I

W

ConceptualModel1.B
<<NativeState>>

Figure 2.6: The project window with a selected conceptual mdel

2.7 The les

Each model is stored in a separate le in XML format with a given extension.
The available extensions are the following:

.pml: the le contains a project as a list of related les;

.aml: the le contains a conceptual model made of categories, retions as well
as initialization and dynamics speci cations;

.eml: the le contains a concrete model made of individuals, linksa well as
initialization and output speci cations;

.sml: the le contains a complete simulation model containing alcs the initial-
ization and output speci cations to be run stand alone.
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Figure 2.7: The project window with a selected simulation malel
(G N aNa) Project browser (D)
File Window Help
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Figure 2.8: The project window with a selected category
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Chapter 3

The ontologies

In modeling and simulation, the structure is often understood as a composition
of models, each model computing a function to produce outpug (outgoing events
or values) from inputs (incoming events or values). Of cours, this composition
re ects the structure of the system one wants to model but no dscourse on how
to describe a system structure is explicitly given. On the oher hand, Arti cial
Intelligence has focused part of its theories on how peopleascribe the reality.
This part of Arti cial Intelligence evolved, partly under t he pressure of the web
developments (both about its contents and its services), ito what is called today
the description of ontologies.

The term ontology has its origin in philosophy, where it is the name of a
fundamental branch of metaphysics concerned with existere. According to
Tom Gruber at Stanford University, the meaning of ontology in the context of
computer science, however, is a description of the conceptand relationships
that can exist for an agent or a community of agents. He goesmto specify that
an ontology is generally written, as a set of de nitions of formal vocabulary .

Contemporary ontologies share many structural similarities, regardless of
the language in which they are expressed. Most ontologies deribe individuals,
links, categories, attributes, and relations. In this secton each of these com-
ponents is discussed in turn as well as the related Mimosa specation. More
descriptions can be found in [10, 12].

3.1 Individuals

Individuals are the basic, "ground level" components of an atology. The in-
dividuals in an ontology may include concrete objects such & people, animals,
tables, automobiles, molecules, and planets, as well as abact individuals such
as numbers and words. Strictly speaking, an ontology need rianclude any in-
dividuals, but one of the general purposes of an ontology isa provide a means
of classifying individuals into categories, even if thoseridividuals are not explic-
itly part of the ontology. In Mimosa, the concrete model editor is provided for
de ning the individuals, out of the de ned categories. Only the individuals can
actually behave and therefore be simulated. In gure 3.1, wehave three plots
(p1, p2 and p3) and two people (John and Paul). The name of thendividual
is optional and indicated before the :. The name after the €mi-colon shall be

18
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pl:Farm.Plot

ohn:Farm.Farmer

2:Farm.Plot

Paul:Farm.Farmer

p3:Farm.Plot

Figure 3.1: Farmer and plot individuals.

pl:Farm.Plot

ownership
ohn:Farm.Farmer £

ownership

2:Farm.Plot

Paul:Farm.Farmer

ownership

p3:Farm.Plot

Figure 3.2: Farmers owning plots.

explained in the following. It actually is the name of the category the individual
belongs to.

3.2 Links

For the model to be properly called a structure, these indivduals usually are
linked to each other in some meaningfull way. In our examplethe gure 3.2
shows some links between the individuals describing that Jon is proprietary of
pl and p2, while Paul is proprietary of p3. The proprietary link is indicated by
the name ownership .

3.3 Attributes

Individuals in the ontology are described by specifying thér attributes. Each
attribute has at least a name and a value, and is used to storenformation that
is speci c to the individual it is attached to. For example th e p2 individual has
attributes such as:

surface 20
cover tree

The value of an attribute can be a complex data type; in this example, the value
of the attribute called cover could be a list of values, not just a single value.
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p2
Trace -
Cle Valeur
surface 20
cover tree

Ok ) (" Cancel ;

Figure 3.3: The description of the plot p2.

Farm.Person
<<NativeState>>

age
name

Farm.Herder Farm.Farmer
<<languageState>> <<languageState>>

cashFlew

Figure 3.4: A category hierarchy of plots and people
In the gure 3.3, some of the attributes are represented.

3.4 Categories

Categories are the speci cation of the common features of gups, sets, or col-
lections of individuals. They are abstractions over sets otoncrete individuals.
Some examples of categories are:

Person : the category of all people (describing what is common to alpeople);

Molecule : the category of all molecules (describing what is common taall
molecules);

Number : the category of all numbers;

Vehicle : the category of all vehicles;

Car : the category of all cars;

Individual : representing the category of all individuals.

Importantly, a category can subsume or be subsumed by otherategories.
For example,Vehicle subsumesCar, since (necessarily) anything that is a mem-
ber of the latter category is a member of the former. The subsmption relation
is used to create a hierarchy or taxonomy of categories downot very specic
categories likeMaizeFarmer at the bottom. Figure 3.4 shows such a hierarchy
of categories.

Usually what is common to a collection of individuals is that they share
the same attributes. In the gure 3.4, all the people have a nane and an
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Farm.Person
<<MativeState>>

age
name

Farm.Plot

Farm.Herder Farm.Farmer ownership <<languageState>>
"

<<languageState>> <<languageState>>

cashFlow

surface
cover

Figure 3.5: A category hierarchy of plots and people with a réationship

age. We also assume that each farmer has a cash ow (but not a hder!). By
subsumption, any farmer and any herder has also a name and anga because
they are particular case of Person. In Mimosa an attribute ha a name, a type
which can be only a single type (short, integer, long, oat, double, string and
color) and a cardinality to have list of values. If an attribu te refers to another
category, it is a relationship and no longer an attribute. Therefore an attribute
is nothing but a relation to a simple notion (like numbers).

3.5 Relations

An important use of relations is to describe the relationshps between individ-
uals in the ontology. In fact a relation can be considered as @ attribute whose
value is another individual in the ontology, or conversely a attribute can be
considered as a relationship with another individual (a nunber is also an indi-
vidual, instance of the category of numbers). For example inthe ontology that
contains the Farmer and the Plot, the Farmer object might have the following
relation:

ownership Plot

This tells us that a Plot can be owned by a Farmer. Together, the set of
relations describes the semantics of the domain. In the gue 3.5, a relation has
been added accordingly. In addition, we have also declaredhat a person can be
proprietary of any number of plots. One can see that the indivduals described
in gure 3.2 appear to be instances of the categories descréd in 3.5 and that
their links appear to be instances of the related relations.

In Mimosa, a relation is uni-directional and links a categoly to another, with
a cardinality.

The mostimportant type of relation is the subsumption relation (is-superclass-
of, the converse of is-a, is-subtype-of or is-subclass-ofjready mentioned in the
previous section.

Another common type of relations is the meronymy relation (written as part-
of) that represents how objects combine together to form corposite objects. For
example, if we extended our example ontology to include obfs like Steering
Wheel, we would say that "Steering Wheel is-part-of Ford Exporer" since a
steering wheel is one of the components of a Ford Explorer. Ilfve introduce
part-of relationships to our ontology, we nd that this simp le and elegant tree
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structure quickly becomes complex and signi cantly more dicult to interpret
manually. It is not di cult to understand why; an entity that is described as
'‘part of' another entity might also be 'part of' a third entit y. Consequently,
individuals may have more than one parent. The structure tha emerges is
known as a Directed Acyclic Graph (DAG).

The part of the ontology consisting of the categories, attrbute descriptions
and relations (either taxonomic or semantical) shall be cded the conceptual
model The part of the ontology consisting of the individuals, their attribute
values and their links shall be called theconcrete model In the following the
editor to create the conceptual model shall be described. Imddition, we shall
describe how to specify the dynamics associated to each catery. Thereafter,
we shall introduce the concrete model editor.



Chapter 4

The conceptual model editor

4.1 The editor

The conceptual model editor is made of three panels for editig the conceptual
model:

the graph panel for graphical editing.

the list panel for editing the ontology as a list of de nition s (a kind of
dictionary).

the list panel of in uence types to be explained in the sectim 5.

The list panel is the reference to know all the categories dened in the edited
conceptual model. In eect, a category may not appear in the gaph panel.
Conversely, a category may appear several times in the grappanel as well as
categories from other conceptual models. The rational belmd this behavior
is that the drawing (hence the graph panel) must have an explaatory power
(not only a de nitory one) and therefore any drawing clarify ing the explanation
should be possible. We shall concentrate on the graph panelhich is neverthe-
less easier to use for de ning the categories and the relatiships.

The starting point is the tool bar in the upper part of the wind ow as illus-
trated in the gure 4.1 where seven buttons appear:

the rst one is the grabber for selecting an object (categoryor relations)
in the drawing and is always selected by default;

the second is the note object to write down documentary commets to
associate to categories;

the third is the link to associate a comment with a category;

e R = R N
Figure 4.1: The buttons of the ontology editor.
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L
| Thisisa
Farm.Person |- et

<<NativeState>>

age: Integer
name: String

Figure 4.2: An annotated category.

Existing
Farm.Person
Farm.Farmer
Farm.Plot

Name Herder

e Neaw Existing ] _ Cancel

Figure 4.3: The creation dialog for a category.

the fourth is for creating or selecting categories to draw;
the fth one is the taxonomic relationship;
the sixth is the semantic relationship;

nally, the seventh is the button to access the push down menufor ma-
nipulating the grid behavior as already described in 2.4.

The rst three buttons as well as the last one are always preset for each graph
editor, so it shall not be explained again. The gure 4.2 shove the use of a note.

The Edit menu contains an additional item called Export documentation...
for generating an HTML le containing the exhaustive description of each de-
ned category, including its associated documentation (se 4.2.2). This option is
very useful to generate a lexicon of all the notions introdued in the conceptual
model.

4.2 Category edition

4.2.1 Drawing a category

To draw a category in a given place it is enough to click on the orresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened dlustrated
in the gure 4.3.

This dialog is composed of two parts:

the upper part lists all the categories available in all the gpened ontologies.
Selecting one of these and typing either return or pushing tle Existing
button shall draw the corresponding category at the selectd place;
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Farm.Person
<<NativeState>>

age: Integer
name: String

Figure 4.4: The category graphical form.

the down part is used to create a new category with a name eld b enter
a new name (which must be unique within the current ontology)

A rectangle with either one or two subparts shall be drawn at the selected
place 4.4:

the upper part has two lines:
the rst line is the name of the category pre xed by the nhame of the
ontology;
the second line is the name of the way to de ne the behavior fothis
category*. NativeState is chosen by default and does nothing.

the down part is the list of attributes with their speci cati on.

4.2.2 Editing a category

A category can be edited by double-clicking on it, or by seleting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...

in the popup menu. The category editor dialog (4.5) shows up \ith the following
parts:

the name of the category, which cannot be changed,;

an abstract check box to specify whether the category can hve instances
or not (e.g. most probably, in our example, there shall not bedirect
instances of Person, but only of Farmer and Herder);

the super type, i.e. the category subsuming this category;

a panel where one can specify either the documentation, thettibutes,
the relations and the behavior (see chapter 5).

In gure 4.5, one shows the attribute panel where the local atributes can be
added or deleted through a popup menu. Additionally, one cansee the list of
inherited attributes as shown in gure 4.6, but this list can not be edited. Only
the locally de ned attributes can be edited, the inherited list being computed.

4.2.3 Deleting a category

A category can be deleted by selecting it and selectindkemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the category must be removed from th ontology:

1For UML literates, it looks like a stereotype, and in fact it h  as a related semantics with
respect to the MDA speci cations.
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Name
Abstract: 5|

Super category: (" Farm_person

| Documentation ~ Attributes = Relations  Dynamics 1

Attribute declarations

Local attributes (=) Inherited attributes ()
Attribute Cardinality Type
cashFlow 1Float

( ok ) (cancel

Figure 4.5: The category editor with the attribute panel.

Name
Abstract: H

Super category: [ Farm.Person H

| Documentation ~ Attributes | Relations  Dynamics |

Attribute declarations.

Local attributes () Inherited attributes (=)
Auribute Cardinality Type
age 1integer
cashFlow 1 Float
name 15tring

( ok ) ( cancel

Figure 4.6: The category editor with the inherited attribut es.

if yes, the category is removed both from the drawing and the ikt of
categories de ned in the ontology;

otherwise, only the drawing is removed but the category remas as an
existing category.

4.3 Relation edition

4.3.1 Drawing a relation

To draw a relation in a given place it is enough to click on the orresponding
button and then from a category (called the source category)to another one
(called the target category), or to right click at the desired place to show up
the same toolbar as a popu menu. A new dialog is opened as illwated in the
gure 4.7.

New
Relation ownership
Cardinality

f New ) Existmg) (" Cancel )

Figure 4.7: The creation dialog for a relation.
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Farm.Farmer

L ownership
<<NativeState>> -

Farm.Plot
<<NativeState>>

cashFlow: Float

Figure 4.8: The example of a relation.

Name
Abstract: O

Super category: | Farm.Person |

| Documentation  Attributes  Relations  Dynamics |

Relation declarations

Local relations (=) Inherited relations ()
Relation Cardinality Category
ownership “Plot

(ok ) (Cancel)

Figure 4.9: The relations of a category.

This dialog is also composed of two parts even if in the gure 47 only one
shows up:

the upper part lists all the existing relations available between the two
selected categories. Selecting one of these and typing e&hreturn or
pushing the Existing button shall draw the corresponding relation be-
tween the two categories.

the down part is used to create a new relation with three elds

a name eld to enter a new name (which must be unique within the
source category);

a cardinality eld to specify whether the relation can reference one,
several or any nhumber of objects of the given target category

The arrow from the source category to the target category is anotated by
all the relevant information as shown in the gure 4.8. Additionally, the *
means that each of these links can be drawn with any number of Ipts.

The list of de ned relations for a category also appears in tte relation panel
of the category editor as shown in the gure 4.9. A relation can be added or
removed directly from this panel but the added relations shdl be drawn only if
requested as an existing relations.

The subsumption or taxonomic relationships is a particularcase where noth-
ing need to be speci ed but the source and target categories.

4.3.2 Editing a relation

A relation can be edited by double-clicking on it, or by seleting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The same editor appears as for creating it.
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4.3.3 Deleting a relation

A relation can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the relation must be removed from the mode

if yes, the relation is removed both from the drawing and the Ist of rela-
tions de ned for the source category;

otherwise, only the drawing is removed but the category remas un-
changed.

A relation can also be removed from the relation panel of the gurce category
editor. If it is deleted this way, all the drawings of the relation shall disappear
as well.



Chapter 5

The behavior

5.1 Introduction

For each category, one can associate a speci cation of the havior of the cor-
responding individuals. Basically, it is made by selectinga way to specify the
behavior (a state machine, a markov process, a di erential guation, and the
list is extensible at will) and then by specifying the behavior according to the
selected way (the states and transitions for a state machingthe states and tran-
sition matrix for a markov process, etc.). The behavior itsdf is de ned by the
speci cation of the state, how the state evolves (the state dynamics) and how to
initialize it. The behavior is speci ed by opening the category editor as shown
in gure 5.1 and to select the behavior panel.

At the top, there is the speci cation of the multiplier betwe en the global
time grain and the local time grain®. Further explanation on the representation
of time in Mimosa can be found in section 5.2.5. Just under it,there is drop-
down menu to choose the formalism to use, conditioning the pssible states,
initializations and dynamics. This list is extensible through plugins.

The behavior panel is itself made of six subpanels:

the probe panel is used to de ne what can be observed from thendividu-

als. It is used for displaying what happens during the simulaion or saving

it to any media for further processing (statistics, etc.). The probes shall
be described in the section 5.2.4.

the incoming in uences panel is used to specify the events th individuals
are able to react to. They shall be explained in the sections 2.1 and
5.2.3.

the outgoing in uences panel is used to specify the events th individuals
are producing. They shall also be explained in the sections.8.1 and 5.2.3.

the state panel is used to specify the state structure which an be a vari-
able, a set of possible states, a set of attributes, a knowleg base or
anything depending on how one want to describe the behavior fothe in-

dividuals of this category.

1The grain is the smallest di erence between any two time meas ure which can be distin-
guished.

29
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Abstract:

Abstract: ]

Super category: | DefaultCon Person

| Documentation  Attributes  Relations  Behavior |

State definition

Time ratio: 2

Formalism: | StateChartState

! Probes Ininfluences  Out Influences  State itializatis Dynamics |

State definition

| State chart  Logical reaction |

i0 " O @® N N\

| class mimosa.state.language. 0l

Ok ) Cancel

Figure 5.1: The behavior panel of the category.

the initialize panel describes how to initialize the state d the individuals,
each time the simulation is setup. The initial state can be rdrieved from
a data base or set the same for all the individuals.

the dynamics panel is used to specify the state evolves oveimie. Once
again, it can be a dierential equation, a state machine or whatever
suits the chosen state structure. In the gure 5.1, the chosa way to
specify the behavior is through a state chart as specied in WL called
StateChartState . Therefore a corresponding state chart editor is shown.

To understand the o ered possibilities and, more importantly, the behav-
ior one can expect from these various formalisms, i.e. statdnitialization and
dynamics speci cations, it is necessary to go down to the grond and expose
a little bit of the underlying machinery. This is done in the following section.
Thereafter, we shall introduce some already existing formiisms and their cor-
responding speci cations.

5.2 The operational semantics

Globally, the underlying machinery is nothing but a discrete event simulation
system. The running model is made of entities sending time stimped events
which are delivered to their target entities at the speci ed dates, possibly gener-
ating new time stamped events and so on. The scheduler is in einge of ordering
the events by their time stamps and to execute them in order. The only thing to
specify is how each entity behaves, i.e. generates new timéasnped events and
reacts to incoming events. It is the purpose of the next sectin. In the following
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Figure 5.2: The structure of an M-DEVS entity.

the events are called in uences for obscure (another name fdistorical) reasons

[8].

5.2.1 The model

The underlying simulation semantics is based on an extensioof //-DEVS (see
[14]) called M-DEVS as a shorthand for Mimosa-DEVS. Therefoe, one must
understand how M-DEVS works in order to master the behavior d the models
although most details are assumed to be hidden by higher levef abstractions
as suggested in the introduction of this chapter.

A M-DEVS entity is a tuple:

<X;Y;P;S;0;init;  ext; int; logs con; exts ints logs st probe >
where:

X: is a set of incoming in uences which are de ned in the incomirg infuences
panel;

Y: is a set of outgoing in uences which are de ned in the outgoirg infuences
panel;

P: is a set of probes which are de ned in the probe panel;
S: is a set of possible states as de ned in the state panel;
O: is a set of output ports the elements of Y are sent to;

At this stage, we have the structure of an entity, regardlessof its possible dy-
namics. This entity is represented in the gure 5.2 where theports are repre-
sented by black triangles, and the arrows shows the incomingn uences from
the left, the outgoing in uences through the ports on the right and the probes
(or observations onS) from the top.

The function init is called for initializing the entity when created (either at
the beginning of a simulation or when created). The dynamicsis described by
the following functions:

ext - 1S @ function to specify the reaction to a set of incoming in uences (all the
in uences occurring at the same time are given simultaneous);
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int IS a function to specify the internal change (when and what todo is spec-
ied by it );

con: IS a function to specify the reaction to the simultaneous ocarrence of an
internal change and the arrival of a set of incoming in uences;

log: IS a function to specify the reaction to a set of logical in uences, possibly
producing further logical in uences;

ext . IS @ function to provide the outgoing in uences (when it is caled is also
specied by in );

int : is a function to provide the what to do (an internal in uence) and when
(called the duration to wait before doing the internal change);

log . IS @ function to provide the logical in uences to occur after each transition,

str - 1S a function to provide the structural changes to occur alsoafter each
transition;

probe - 1S @ function to provide the observables of the state changeafter each
cycle;

For all functions but init , the duration since the last cycle (see below) is given
as an argument. Therefore the internal logic of any atomic madel is based on
durations.

Although complicated at the rst sight, the logics is very simple:

ext and oy are the functions to issue the events (e ) and to handle
them ( ex ). It corresponds straight away to the intuitive event based
mechanism as explained in the introduction. The events are pduced
when elapsed since the last transition;

int and iy are the functions for specifying the spontaneous behavior,
i.e. what the box does ( int ), when () and how ( int );

log @and oq are used to propagate information ( 1og) and make compu-
tations based on this information ( og);

str Speci es the possible modi cations in the interconnection topology
(see below).

probe SPECi es the observations to provide at each cycle.

Mimosa implements a unique so-called M-DEVS bus which is a $eof M-
DEVS entities with interconnected ports. More precisely, aM-DEVS bus is a
pair < E;links > where:

E: is a set of M-DEVS entities;

links : is a mapping fromE O into E specifying a mutable interconnection
topology;

For simulation, the M-DEVS bus runs in cycles. Each cycle coresponds to
a certain date where everything happening at that date is prgpagated through
all the M-DEVS entities. At each cycle:
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1. each model is asked for its . Let min be the smallest value;
2. the global time is advanced bymin . Let:

C be the set of models with the sameamin

C%2 C be the set of models producing outputs;

3. ext is called for each model inC°and the outgoing in uences are gathered
and their destinations are identi ed using links ;

4. for each modelm in C:

if m has simultaneous incoming in uences and an internal change
con 1S called;

if m has only an internal change, it is called;
if m has only incoming in uences, e is called;

and all the outgoing logical in uences are gathered;

5. all the logical and structural in uences are dispatched via links by calling
log, st and jog until there is no logical in uences left (be careful about
possible loops which are not detected).

6. all the observations of the state changes are issued cafin prope -

For each individual, MIMOSA shall generate a correspondingentity which
shall be initialized from the list of its attribute values in a state speci ¢ way as
speci ed by init . A more formal and detailed account can be found in [11].

5.2.2 The ports

A port provides a way to connect M-DEVS entities together. A port can connect
an entity to any number of other entities. In Mimosa we distinguish between
a port and a port name. A port name can be a simple name (aString ),
designating all the entities linked through the given port, or a name with an
index (with the syntax <name>['('<int>")"] ), designating one of the entities
linked through this port. In the case the cardinality of the p ort is one (only one
entity can be linked through this port). The two possible port names <name>or
<name>'(0)' are equivalent. Therefore the index is optional if the cardnality
is 1.

If the reader perceives some relationship between a port and link, he is
right. We are here using the vocabulary used in the modeling ad simulation
community which is unrelated to the vocabulary used in the onology com-
munity. As for individuals generating M-DEVS entities, the links are used to
produce the initial interconnection topology as ports.

5.2.3 The inuences

An in uence is an event which is transmitted between two M-DEVS entities. In
Mimosa we also distinguish between in uence types and in uaces as instances
of in uence types.
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The in uence types are just names but must be declared. Thesenames
are unigue in a given conceptual model (or ontology). This type level is not
really useful at this stage but provides a provision for further typing (like the
declaration of the arguments) to be used for connectivity wth other buses like
HLA or CORBA where the type of transmitted information has to be declared.

The in uences are instances of in uence types. For the time keing they have:

a name which is the name of the corresponding in uence type;
a content which is either empty or an array of elements.

For ensuring communication between entities possibly writen in various lan-
guages, and in particular, in various scripting languagesa standard and limited
format is imposed for the content. A content is necessarily a array (at the
implementation level an instance of Java array) of:

arrays, allowing recursive structures;

simple types: shorts, integers, longs, oats, doubles, bdeans and strings
(respectively implemented internally in Java as instancesof Short, Integer,
Long, Float, Double, Boolean and String).

In principle, no other kind of data can be send through the in uences if one
want to ensure consistency between entites writtent in di erent programming
languages.

5.2.4 The probes

It is possible to associate to any individual (therefore to any M-DEVS entity), a
visualization window for displaying any information evolving over time (e.g. the
entity state changes). Having no hypothesis on the nature othe entity states,
there is NO automatic synchronization between the model andts visualization.
To perform this visualization, one has to declare a list of ppbes given by their
name, type (only simple types are allowed) and cardinality {n reality, it is
just another type of in uence). When specifying the behavia, i.e. the various
transition functions, the user has to explicitly send probe values whenever he
wants to signal a change. The probe value is propagated to theisualization
window which can perform whatever one wants: drawing or savig the data for
further processing.

5.2.5 The time

The underlying time for the whole system is considered dis@te (regardless of
the grain which could be as ne as picoseconds) and thereformapped on natural
numbers. As already mentioned, an M-DEVS entity only consicers durations.
In addition, these durations can only be expressed as integs.

When simulating an M-DEVS entity, a local time is deployed. The creation
of an M-DEVS atomic model either at the start of the simulation or during
it, de nes the origin of the local time (0). All the durations are added up,
generating a local date as an integer. In particular, this laccal time is used to
compute the durations transmitted to the M-DEVS entity.

A step further, the M-DEVS bus de nes a global time. The origin of the
global time (0) is the start of the simulation (initializati on always occurs at the
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global time 0). The M-DEVS entity local times are mapped to the global time
in two ways:

the origin of the local time is situated in the global time at the (global)
time of creation of the M-DEVS entity;

the ratio between the local time grain and the global time grdn is given.
The global time grain is assumed to be the smallest possiblergin able
to take into account the grain of any other atomic model as an ntegral
multiplier of the global grain.

Still at this stage, the time is a natural number without dime nsion (without
unit). The correspondence between this time and the real tine where the origin
of simulation corresponds to a real date and the global grairhas a unit (pi-
cosecond, hour or week) shall be speci ed externally. It isdreseen to be able to
declare this information to the scheduler and use this refeznce to de ne in an
easier way the time units of the entities. It is not yet completely implemented
at this stage.

In summary, any M-DEVS entity has

a grain (the smallest undistinguishable time di erence) dened implicitly
by having durations expressed with integers and explicitlyby a multiplier
with the global grain;

an origin de ned implicitly by having the entity life starti ng at 0 and
explicitly by a position of this origin with respect to the gl obal time.

Although each M-DEVS entity has to de ne the above describedfunctions
for specifying its dynamics and therefore to behave propey the user do not
necessarily need to know about the existence of these funoiis. For example,
the user could only provide a di erential equation, an integration method and
an integration step and a proper de nition of the and functions shall take
care of integrating the equation correctly. This is done by gecifying once and
for all a particular plugin called a formalism. The already provided formalisms
are described in the following section.

5.3 The behavior speci cation

In order to de ne a formalism for specifying the behavior of an entity, the
programmer must expect to have to specify each of the mentioad function for
proper functioning of the model, hence the importance to uneérstand the under-
lying operational semantics as described before. Howeveas mentioned earlier
higher level speci cations can be made as various kind of sta machines, petri
nets, directly speci ed di erential equations with variou s means of integration
as long as there execution can be mapped in the previously desbed functions.
These extensions can be added at will to the system in a way wbh is described
in the programmer's manual.

When editing a category behavior, a number of panes are dedited for
specifying the behavior (see the gure 5.1):

the probes to declare which information is dynamically provded during
entity simulation;
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the incoming in uences to declare the list of incoming in uences;
the outgoing in uences to declare the list of outgoing in uences;
the state pane for specifying the state structure;

the initialization pane for specifying the initialization method;
the dynamics pane to describe the behavior itself.

The chosen formalism as well as the time grain is speci ed ab@ these panels.
Actually, the available means for specifying the behavior ae as follows:

by writing a piece of Java program and declare it to the Mimosasystem
to make it available in the user interface: the so-called had coded or
programmatic way;

by specifying the behavior of each of the mentioned functiorusing a script-
ing language. Several scripting languages are availableaya, scheme, jess
(unavailable due to a need for a license), python, smalltalkand prolog
(not fully tested yet);

with a state/transition diagram where the conditions and actions can be
speci ed in one of the scripting languages mentioned before

with any higher level mean of speci cation as markov processs, etc. de-
pending on the availability of the corresponding plug-in.

These various technics shall be described in turn in the nexsections.

5.3.1 Programmatic speci cation

This section is more appropriate for the programmer's manu&but is included
here to introduce the basics which are made available in the ther ways of
specifying the model behavior. With your favorite Java IDE (for example Eclipse
(http://www.eclipse.org)), create a new project with a package (let's call it
example) in which you have to create a number of classes:

a subclass ofmimosa.state.DefaultState  describing your behaviour state.
In case of a parameterizable formalism, the resulting classhall be con-
sidered as the name of your formalism.

for each particular way you want to provide for initializing your state,
de ne a subclass ofmimosa.init. AbstractStatelnitializer

for each particular way you want to provide the dynamics of yaur state
(how the state changes), de ne a subclass ahimosa.dynamics.AbstractDynamics
or mimosa.dynamics.DefaultDynamics .

For example, for de ning a new behavior calledMyState, the result is a le
with the following content:
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package example;
import mimosa.state.DefaultState;
public class MyState extends DefaultState {

public void setParameter(String name, Object value)
throws EntityException {

public void dolnstancelnitialize(StateSpecification st ateSpecification)
throws EntityException {

}

The two provided methods are called when an entity is created setParameter
for possibly storing the parameter values if necessary andolnstancelnitialize
for building the structure of the state. The latter method is parameterized by
an externally setup speci cation which is entirely dependeit on the way the
state is de ned. We shall not describe further this later possibility but see the
programmer's manual for more details.

For de ning how to initialize the state each time the simulat ion is run, the
resulting le could be like this one:

package example;

import mimosa.init.AbstractStatelnitializer;
import mimosa.scheduler.EntityException;
import mimosa.state.State;

public class MyStatelnit extends AbstractStatelnitializ er {
public void initialize(State state) throws EntityExcepti on {
}

The method initialize is called each time the simulation is run. The state is
given as a parameter because the role of this class is to indtlize the state. If the
way to intialize the state is parameterized externally, the variable initializerSpecification
contains the related speci cation. Once again this structue is completely pro-
grammer dependent and shall not be explained further here.

Finally de ning the dynamics would result in the following c lass:

package example;

import mimosa.dynamics.AbstractDynamics;
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import mimosa.scheduler.EntityException;
import mimosa.state.State;

public class MyStateDynamics extends AbstractDynamics {

public void doConfluentTransition(State self) throws Ent ityException {
public void doExternalTransition(State self) throws Enti tyException {
public void doGetExternal(State self) throws EntityExcep tion {

public void doGetinternal(State self) throws EntityExcep tion {

public void doGetLogical(State self) throws EntityExcept ion {

public void doGetStructural(State self) throws EntityExc eption {
public void dolnternalTransition(State self) throws Enti tyException {
public void doLogicalTransition(State self) throws Entit yException {
}

AbstractDynamics de nes eight (8) methods:

public void doExternalTransition(State self) throws Enti tyException;
equivalent to eyt .

public void dolnternalTransition(State self) throws Enti tyException;
equivalent to j; -

public void doLogicalTransition(State self) throws Entit yException; :
equivalent to og.

public void doConfluentTransition(State self) throws Ent ityException;
equivalent to ¢on -
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public void doGetExternal(State self) throws EntityExcep tion;
equivalent to ¢y -

public void doGetinternal(State self) throws EntityExcep tion;
equivalent to iy together.

public void doGetLogical(State self) throws EntityExcept ion; : equiv-
alentto joq.

public void doGetStructural(State self) throws EntityExc eption;

equivalent to g« .

If something is going wrong, just throw an EntityException  with the entity
and a message as parameters. The exception will be taken intaccount by the
architecture in an appropriate way. Do not forget to catch any possible exception
and raise anEntityException accordingly for securing the model execution.
Because they are prede ned for doing nothing, you can only dee the methods
you actually need. By using DefaultDynamics instead of AbstractDynamics ,
all the methods are programmed for doing nothing, so it is ory necessary to
de ne the one you really need (not all the methods needs to doamething).

When calling each method, this variable is de ned and appropiately bound
in the context:

time:  contains the duration since the previous transition (remenber that these
methods are called in a given cycle and the M-DEVS bus advancetime
from a cycle to another);

The following methods are de ned for accessing the incomingn uences:
getAllinfluences()  : to get the list of incoming in uences in any order;

getinfluence(String name) : to get the list of incoming in uences with
the given name. It is used to control the order in which to hande the
incoming in uences;

getinternallnfluence() : to get the incoming internal in uence.

To program each functionality, a number of methods are de nel by cate-
gories:

to manipulate random generatorg:

public Random newRandom();

public Random newRandom(long seed);
public boolean newBoolean(Random rand);
public int newInt(Random rand,int max);
public double newDouble(Random rand);

to easily create ports and port references:

public Port port(String name,int index);

2it is necessary to hide which kind of generator is used. Curre ntly the Mersenne Twister
random generator is known as one of the best and provided in Mi mosa.
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public Port portRef(Port port...);
to manipulate the in uence content:

Object[] contentOf(Influence influence) : which returns either
null if there is no content or an array of objects (as de ned in 5.23).

Object[] list(Object... objects)
jects as a content or sub-content.

Object[] array(Object... objects)
jects as a content or sub-content.

Object object(T i) : where T is one of the Java simple types (short,
int, etc.) to encapsulate them within the corresponding class instance
(Short, Integer, etc.).

T toT(Object 0) : where T is one of the Java simple types (short,
int, etc.) to unbox them from the corresponding class instarce (Short,
Integer, etc.).

. to create an array of ob-

. to create an array of ob-

to get the initial value of a parameter:
public Object getParameter(String name)

to post an in uence at a given port:

void sendExternal(String portName, String influenceType Name)
void sendExternal(Port portName, String influenceTypeNa me),

void sendExternal(String portName, String influenceType Name,
Object... args) ,

void sendExternal(Port portName, String influenceTypeNa me,
Object... args)

void sendLogical(String portName, String influenceTypeN ame),

void sendLogical(Port portName, String influenceTypeNam e),

void sendLogical(String portName, String influenceTypeN ame,
Object... args) ,

void sendLogical(Port portName, String influenceTypeNam e,

Object... args)

void sendlInternal(int duration, String influenceTypeNam e),

void sendlInternal(int duration, String influenceTypeNam e,

Object... args) ,

void reply(Logicallnfluence influence, String influence TypeName)
void reply(Logicallnfluence influence, String influence TypeName,

Object... args) ,

These methods can be called in most methods.
to signal a state change by a probe:
public void sendProbe(String name,Object... args)

to destroy itself:
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public void die()

It removes the entity from the scheduler, removes of the linkreferences as
well as all the scheduled incoming in uences.

and nally to stop the entire simulation:
public void stop()

It is used to be able to stop the simulation whenever some coritions
occur.

In addition, a number of methods are de ned to dynamically create and link
entities during the simulation:

void addPort(PortReference name, String categoryName, Ma p<String,Object>
parameters) : creates an entity as an instance of the given category,
whether it is traced or not and the map of attribute values;

void addPort(String name, String categoryName, Map<Strin  g,0Object>
parameters) : same as above when there is a simple syntax for the port
reference;

void linkPort(PortReference portRefl, PortReference por tRef2) :
links the port reference to the entities referenced by the seond port ref-
erence, creating new links;

void linkPort(String portRefl, PortReference portRef2) : same as
above;
void linkPort(PortReference portRefl, String portRef2) . same as
above;
void linkPort(String portRefl, String portRef2) : same as above;
void removePort(PortReference portRef) : removes the entities from

the given port, without destroying the referenced entities (they kill them-
selves usingdie ).

void removePort(PortReference portRef) : same as above.

To simplify the speci cation of the parameters in addPort, two additional meth-
ods are provided:

public Pair pair(String name,Object args...) . for creating a pair
(parameter name, value);

public Map<String,Object> parameters(Pair args...) . for creating
the adequate map from the pairs.

For example, if we want to program the behavior of a clock whiti sends a
in uence named tick to its clocked port at interval time, we could have the
state de ned this way:



CHAPTER 5. THE BEHAVIOR 42

package example;

import mimosa.state.DefaultState;

public class MyClock extends DefaultState {
private int interval;

public int getinterval() { return interval; }

public void setParameter(String name, Object value)
throws EntityException {

if (name.equals("interval")) interval = ((Integer)value ).intValue();
public void dolnstancelnitialize(StateSpecification st ateSpecification)
throws EntityException {

}

}

The state is composed of a single variable recording the inteal between two
tick s from the attribute values. And the dynamics is as follows:

package example;

import mimosa.dynamics.AbstractDynamics;
import mimosa.scheduler.EntityException;
import mimosa.state.State;

public class MyClockDynamics extends DefaultDynamics {

public void doGetExternal(State self) throws EntityExcep tion {
self.sendExternal("clocked","tick");

}

public void doGetlInternal(State state) throws EntityExce ption {
self.sendInternal(((Clock) self).getinterval(),"tick ");

}

}

in which we declare a variable to use the interval between twdicks stored in the
state, the function which signals an output after the given interval and ex
where a single in uence is sent to the port. Notice the use oDefaultDynamics
for not de ning all the methods when only two are necessary.

Of course, it is not enough to write the code. This code has to & known by
Mimosa. In order to do that, you have to create an XML le in whi ch Mimosa
can read the following declarations:

<?xml version="1.0"?>
<mimosamodule name="Example" package="example">
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<behaviour notion="EntityType" implementation="MyCloc k">
<parameters>
<parameter name="interval" cardinality="1" type="java.
</parameters>
<outInfluences>
<influenceType name="tick"/>
</outinfluences>
</behaviour>
<dynamics state="MyClock" dynamics="MyClockDynamics"/ >
</mimosamodule>

This XML le contains everything you would have declared thr ough the user
interface and additionnaly de nes through the package and implementation
attributes where to nd the corresponding class for the state. The dynamics
tag declares that MyClockDynamicsis one way (in this case the only way) to
de ne the dynamics of MyClock

You then have to create a folder calledexample, to put the .jar containing
the compiled class, to de ne a le called example-config.xml containing the
content above and to put the whole folder in the plugins subdiectory of Mimosa.
By trying this example, the behavior MyClockwill appear in the list of available
formalisms.

In general, any new behavior (or way of de ning behaviors) ca be added
to Mimosa by putting in the plugins directory a folder called xxx with a le
called xxx-config.xml in it with the related XML content and as many .jar
as necessary. Further details as well as the complete syntaaf the XML le
shall hopefully be presented in the programmer's manual.

5.3.2 Scripted speci cation

The previous procedure being relatively heavy but necessgrif one wants either
an e cient piece of code or to use Java to encapsulate a legacgimulation

software, we provide the same functionality by using scriping languages directly
through the user interface. The basic principles are the sam and we are using
the same names for the variables and functions or equivalerfor consistency. For
using this functionality, you have to select Scripting in the drop down menu of
the behavior pane. In the state panel, you will have another drop down menu
to select the desired scripting language as well as an editdior specifying the
structure of the state.

In a model, any combination of scripting languages can be usktbecause
all the speci c data structures are translated into a standard Java format and
back to the speci c data structures. So feel free to use any o&you nd most
appropriate for your usage. Of course, it requires to be multlingual!

Java scripting

Java scripting makes available the full Java language by usig the bean shell
library (see [5] for getting the related documentation). In particular, all the
methods de ned in the section 5.3.1 are readily available. ldwever to call them,
a new variable is de ned: self . The methods can be called by addressing them
to self . For example, for the ¢4 function, the code is:

lang.Integer"/>
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self.sendExternal("clocked","tick");

There is one drawback in using Java scripting: all the Java types have to
be pre xed explicitly by the package name (for examplejava.lang.Integer
instead of simply Integer ). Conversely, one can use undeclared variables pro-
viding exibility.

Scheme scripting

The Scheme language is a kind of pure functional language (lsad on lambda-
calculus). The facilities for manipulating symbols and ligs make it particularly

useful for qualitative and symbolic manipulations, much less for numerical com-
putations. We are using the Kawa library ([6]: fast and complete but with

scoping problems) as well as JScheme ([3]: limited and slowub semantically
consistent) for providing Scheme. The documentation for tke language itself
can be found on the corresponding web site. The appendix A prades a short
reference to the Scheme language as well as the list of prowd functions for
calling Mimosa.

Jess scripting

Jess is a rule base language with a forward chaining semantiqsee [2]). The
behavior is described as a single set of rules of the formconditions> =>
<actions> . Whenever the conditions are met, the corresponding rule isred
and the actions executed. In our case, each M-DEVS functionntroduces the
time, the in uences and the function name in the fact based am the rules are
red accordingly until no rule is applicable. The example of the clock looks like
this:

(defrule initializel

(initialize)

=>

(make (interval (getParameter "interval"))))
(defrule getExternal

(getExternal)

=>

(sendExternal "clocked" "tick"))
(defrule getinternal

(getinternal)

(interval $value)

=>

(sendinternal $value "tick"))

It is no longer maintained because Jess requires a licence ih is free for

academics but costly for others. The library is not providedwith the distribution
for that reason but can be downloaded from [2].

Python scripting

The implementation uses the Jython library whose document#éion can be found
on [7]. We are using the possibility in this version of Pythonto call Java objects
with the standard Python syntax. Accordingly, the variable self is de ned as
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well as all the variables as in Java and the corresponding mébds can be called
directly. So, there is not much di erence with Java. However, for facility, we
have de ned the corresponding functions which can be calledlirectly without
using the reference toself .

Prolog scripting

Prolog ia a rule base language with a backward chaining seméains. The behav-
ior is described as a single set of rules of the formconclusion> :- <conditions>

The program is run by asking for a conclusion and the program ties to nd

the possible proofs. As in Jess, each M-DEVS function introdces the time,
the in uences and the function name in the fact based and the ules are red
accordingly until no rule is applicable. The run predicate must be de ned. The
example of the clock looks like this:

run :- initialize,
X is getParameter(interval),
asserta(interval(X)).
run :- getExternal,
sendExternal(clocked,tick).
run :- getinternal,
interval(X),
sendInternal(X,tick).

Implemented but not yet fully tested. The implementation uses the tuProlog
library whose documentation can be found on [4].

Smalltalk scripting

The implementation uses Athena (see the we site [1]) which i lightweight im-
plementation of Smalltalk for embedded applications and ha been fully tested.
A class calledSelf has been implemented with a number of class methods to
access Mimosa from Smalltalk. The list of implemented methds can be found
in the appendix B.

5.3.3 State charts

Coming soon.

5.3.4 Further extensions

This level being extensible at will by adding further meta-ontologies, this chapter
shall only describe some of them as provided in the rst versins of Mimosa.
How to de ne new meta-ontologies is described in the programmer’'s manual. In
this chapter, we shall introduce the meta-ontologies for olfect, space, cellular
automata and multi-agent systems.

The objects

Most categories have very simple behavior corresponding tmhly to what is
available in objet-oriented programming. For the categores, it is not necessary
to provide the full M-DEVS functionality (although object- orientedness can be
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mapped in a subpart of M-DEVS). We have provided two versionsorresponding
to most needs:

StaticObject is used when the only functionality is around state variable
values being set and get;

SimpleObject is an extension ofStaticObject where external and logical
in uences are considered as method calls: the external in ences when
the SimpleObject will change state in response, and the logical in uences
when only information updates and requests have to be handb:

StaticObject contains a set of state variables to choose among the at-
tributes 3. The following incoming in uences are expected:

setState name value : as an external in uence to change the value of
one of the variables;

getState name: as a logical in uence to ask for the value of one of the
variables.

The following outgoing in uences are issued in response tohe getState in u-
ence:

state name value : as a logical in uence to communicate the value of the
requested state variable;

undefinedState name: as a logical in uence to communicate the state
variable has no value.

SimpleObject has the same semantics aStaticObject and as such pro-
vides to the same incoming and outgoing in uences. In additon to de ning the
state variables, the modeler can add as many additional incaming and outgoing
in uences as he wants. SimpleObject allows to associate a piece of code to
execute to each incoming in uence. In gure 5.3, the upper pat shows on the
left the list of de ned attributes and on the right the list of attributes which
have been chosen as state variables. In the bottom part, onean see the chosen
scripting language, the chosen incoming in uence and the asciated code. The
arguments of the in uence if any are stored in the variablearguments as a list.

The spaces

Coming soon.

The cellular automata

Coming soon.

The multi-agent systems

Coming soon.

31t is assumed that a state variables always has an initial val ue to be set from the corre-
sponding attribute.
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Figure 5.3: The behavior panel of a simple object.



Chapter 6

The concrete model editor

At this stage, the conceptual model has been completely de ed both with
its structural part (the ontology properly speaking) with t he categories, their
attributes and their relations, and its dynamical part by sp ecifying in a way
or another the dynamics of the individuals speci ed by each ategory. The
concrete model editor shall use these de nitions for providhg the user with
the possibility to describe as many concrete models as he winas a set of
individuals, attribute values and links. These individuals, attribute values and
links are nothing but the instances of the corresponding catgories, attribute
descriptions and relations. Their edition shall be descriled in the sections 6.1
and 6.2.

In addition, the user must specify what to do with the probes (see 5.2.4). Asa
reminder, the probes are speci ed in the dynamical descripbn of the categories
and must be sent to signal a state change of interest, usingendProbe. The
concrete model editor provides the mean to specify the outpts where one wants
to send these probes. These outputs can be visual as graphdpfs, grids, etc.
or can be les, databases or even channels to various tools nming in parallel
like R, Excel, etc.. This part shall be described in the secthn 6.3.

Finally, the user can visually specify a control panel to be $ed during the
simulation which includes:

the visual outputs;
the widgets to parameterize the model.

This latter part shall be described in section 6.4.
The concrete model editor is made of two panels:

on the left pane, there is a list of existing models. These moels can be
created or removed by double-clicking in this pane.

on the right pane, there are two graph panels:

the rst one is a graph panel very similar to the one used for ceating
conceptual models. The top of the panel is occupied by a dropavn
menu to select the conceptual model from which one wants to istan-
tiate the individuals and links. A concrete model can be draw from
several conceptual models combining various sources of kwtedge.

48
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Figure 6.1: The buttons of the model editor.

the second one is used to visually draw the control panel forhe
simulation of the corresponding model.

Apart from the conceptual model drop down menu, the starting point is the
tool bar in the upper part of the rst graph panel as illustrat ed in the gure 6.1
where six buttons appeatr:

6.1

the rst one is the grabber for selecting an object (individual or links) in
the drawing and is always selected by default;

the second is the note object to write down documentary commets to
associate to individuals;

the third is the link to associate a comment with an individual;
the fourth is for creating or selecting individuals to draw;

the fth one is the link;

the sixth is used for creating an output;

the seventh is a link between an individual and an output to specify where
to send the probes;

nally, the sixth is the button to access the push down menu far manipu-
lating the grid behavior as already described in 2.4.

Individual edition

6.1.1 Drawing an individual

To draw an individual in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened dlustrated
in the gure 6.2.

This dialog is composed of two parts:

the upper part lists all the individuals available in the selected model.
Selecting one of these and typing either return or pushing tle Existing
button shall draw the corresponding individual at the seleded place.

the down part is used to create a new individual with two elds:

a drop down menu from which to select the category one wants to
create an individual from;

a name eld to enter a name which is optional but can be used for
documentation purpose.
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Figure 6.2: The creation dialog for an individual.
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Figure 6.3: The individual graphical form.

A rectangle is drawn as illustrated in the gure 6.3 with a name which
composed of the optional name of the individual, a semi-colo and the category
name which is itself composed of the ontology name and the cagory name.
Under its identi cation, the list of attribute values is ava ilable. Under the
name of the individual, there is a stereotype mentioning howthe individual
can be initialized. As it is possible to describe how to initelize a state for all
the individuals in the category behavior part, it is possible to specify for each
single individual how to initialize it. It is usefull when th e individual is itself
a complicated structure, for example when it generates addional individuals
before running the simulation.

6.1.2 Editing an individual

An individual can be edited by double-clicking on it, or by sedecting it and
selectingEdit...  from the Edit menu, or by right-clicking on it and selecting
Edit...  in the popup menu. The individual editor dialog (6.4) shows y with
the following parts:

the name of the category, which cannot be changed,;
the name of the individual which can be changed at will;
a panel where one can specify the attribute values.

a panel where it is possible to select among several ways toifialize the
individual and to edit the associated parameters if necessg. In this case,
it has been chosen to initialize it interactively. A list of t he parameters to
be speci ed is displayed underneath.
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| Parametersinitializer |
] surface

Ok Cancel

Figure 6.4: The individual editor with the attribute and the initialization panels.

New
Relation type | ownership(l) #

0

f New | K_Existing_\_ { Cancel )

Figure 6.5: The creation dialog for a link.

6.1.3 Deleting an individual

An individual can be deleted by selecting it and selectingRemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the individual must be removed fromthe model:

if yes, the individual is removed both from the drawing and the list of
existing individuals de ned in the model;

otherwise, only the drawing is removed but the individual remains as an
existing individual.

6.2 Link edition
6.2.1 Drawing a link

To draw a link in a given place it is enough to click on the corresponding button
and then from an individual (called the source individual) to another one (called
the target individual), or to right click at the desired plac e to show up the same
toolbar as a popu menu. A new dialog is opened as illustratednithe gure 6.5.

This dialog is composed of the list of available relations b&veen the two
selected individuals as de ned in the corresponding categy of the source in-
dividual. Depending on the arity of the relation (i.e. the number of indices to
fully specify the relation), as many text elds are displayed underneath to enter
the indices values. In the gure 6.5, the relation is of arity 1, so only one index
must be speci ed.

The arrow from the source individual to the target individual is annotated
by the relation name as shown in the gure 6.6. The index values are written
between parenthesis.
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pl:Farm.Plot
phn:Farm.Farmer

jownership(0} surface: 10.0

age: 30
cashFlow: 1200.0
name: Parker

p2:Farm.Plot

Paul:Farm.Farmer surface: 10.0

ownership(0)
—_

age: 45 ownership(1)
cashFlow: 5300.0

name: McGregor 3:Farm.Plot

surface: 15.0

Figure 6.6: The example of links.

6.2.2 Deleting a link

A link can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the link must be removed from the model:

if yes, the link is removed both from the drawing and the list of links
de ned for the model;

otherwise, only the drawing is removed but the link remains unchanged.

6.3 Output speci cation

The gure 6.7 shows a concrete model with three individuals ad one output.
The arrows are connecting the individuals to an output which is, in this case,
a 2D grid view, specifying that the corresponding probes musbe sent to that
output.

6.3.1 Drawing an output

To draw an output in a given place it is enough to click on the caresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened dlustrated
in the gure 6.8.

This dialog is composed of two parts:

the upper part lists all the outputs available in the selected model. Select-
ing one of these and typing either return or pushing theExisting button
shall draw the corresponding output at the selected place.

the down part is used to create a new output with a drop down merm from
which to select the kind of output one wants to create.
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Figure 6.7: A concrete model with an output speci cation.

Figure 6.8: The creation dialog for an output.

Figure 6.9: The output graphical form.
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Figure 6.10: The output editor with an attribute panel.

An ellipse is drawn as illustrated in the gure 6.9 with a name which com-
posed of the kind of chosen output and an automatically geneated name be-
tween parenthesis to uniquely identify this output for furt her manipulation.

6.3.2 Editing an output

An output can be edited by double-clicking on it, or by selecing it and selecting
Edit...  from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The output editor dialog (6.10) shows up wth two parts:

a drop down menu to choose the kind of output;

a panel which depends entirely on the kind of output. In the gure 6.10,
it is an editor to attribute colors to various probe values for visualization.
If the output is directed to a le, the le should be de ned, et c.

The available outputs depend on the behavior associated totte correspond-
ing individual and are therefore described with the possibé dynamical speci -
cations. However, a number of general purpose outputs are prided and shall
be described in the following.

General

A number of general probe observers are de ned:
the probe view to monitor any probes.
the probe output for saving the probes to a le.

A probe view is a probe observer that displays sequentially hthe received
probes. It is useful to monitor any entity.

A probe output is a probe observer that saves sequentially ina le the
selected probes. It is parameterized by:

the le name;
the separator between the saved elds;

whether the probe name, global time and local time has to be s&d too;
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the list of saved probes.
It can receive any probe of which the arguments shall be saveth the le, one
per line, optionally preceded by its name and its global and dcal time stamps.

Plots

A number of probe observers for plotting data has been introdiced:

the category chart view is plotting series of which values ag given by
categories;

the series chart view is plotting series given by X,y coordiates.
the times chart view is plotting series against the probe tine stamps.

More precisely, a category chart view is a probe observer thavisualizes
series plotted by categories. It is parameterized by:

the chart name;

the x axis name;

the y axis name;

the type of chart;

whether it has a legend or not;
whether it has tool tips or not;

It understands probes of the form: ‘category',<categoryName>,[<seriesName>],<value>
where the names can be any string and the value is expected toeba double or
convertible to a double. The name of the series is optional wén there is only
one series to display.

A series chart view is a probe observer that visualizes seegiven by X,y
pairs. It is parameterized by:

the chart name;

the x axis name;

the y axis name;

the type of chart;

whether it has a legend or not;
whether it has tool tips or not.

It understands probes of the form: 'series',[<seriesName>],<xValue>,<yValue>
where the name can be any string and the values are expected toe doubles or
convertible to doubles. The name of the series is optional wén there is only
one series to display.

A time chart view is a probe observer that visualizes series fowhich values
depends on time. It is parameterized by:
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the chart name;

the x axis name;

the y axis name;

whether it has a legend or not;

whether it has tool tips or not;

whether time is local or global;

whether time is used straight or converted to date.

It understands probes of the form: 'time',[<seriesName>],<value> where

the name can be any string and the value is expected to be a doldor convert-

ible to a double.The name of the series is optional when theré only one series
to display.

Discrete2DSpaceView

A discrete 2D space view is a probe observer that visualizegatial information.
The space is considered continuous by default, it becomes gslirete when the
number of lines and columns (hence of cells) is speci ed. Theells are considered
to have layers corresponding to attributes. Only one cell Iger can be displayed
at a time. The space is populated by objects of various typesEach object type
also has layers. Each object is referenced by an id which is igue for each type.
The parametrization is as follows:

one can specify for any cell layer value range a color;

one can specify for each object type layer value range a shapa color and
a shadow color.

It understands probes of the forms:
‘csize’,<width>,<height> to specify the extent of the continuous space;

'dsize’',<line>,<column> to specify the number of lines and columns of
the discrete space;

‘cellLayers'{,<layerName>} to specify the names of the cell layers;

‘'objectLayers’,<type> {,<layerName>} to specify the names of the
object layers for a given type;

‘cellState’,<x>,<y>[,<layerName>],<value> to specify the value of a
layer of a cell;

'objetState’[,<type>],<id>,[,<layerName>],<value> to specify the
value of a layer of an object;

‘cPosition’[,<type>],<id>,<x>,<y> to specify the position of an ob-
ject of a given type in continuous space;

'dPosition'[,<type>],<id>,<x>,<y> to specify the position of an ob-
ject of a given type in discrete space;
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Figure 6.11: The creation dialog for an output edge.

‘cellEntity',<x>,<y>,<port> to specify the entity associated to a cell
(used to associate an observer to it);

‘objectEntity'[,<type>],<id>,<port> to specify the entity associated
to an object (used to associate an observer to it);

The names can be any string, the values are expected to be dolds or convertible
to a doubles. All other values are integers. The object types optional if there
is only one object type, and so it is for the layers.

GraphView

Coming soon.

6.3.3 Deleting an output

An output can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the output must be removed from the model:

if yes, the output is removed both from the drawing and the lig of existing
outputs de ned in the model;

otherwise, only the drawing is removed but the output remairs as an
existing output.

6.3.4 Drawing an output edge

To draw an output edge in a given place it is enough to click on he corresponding
button and then from an individual (called the source individual) to an output
(called the target output), or to right click at the desired p lace to show up the
same toolbar as a popu menu. A new dialog is opened as illustied in the gure
6.11.

This dialog is composed of the list of available output edgedetween the
individual and the output.

6.3.5 Deleting an output edge

An output edge can be deleted by selecting it and selectindiRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output edge must be removed fronthe model:



CHAPTER 6. THE CONCRETE MODEL EDITOR 58

Figure 6.12: The control panel toolbar.

if yes, the output edge is removed both from the drawing and tte list of
output edges de ned for the model;

otherwise, only the drawing is removed but the output edge renains un-
changed.

6.4 Control panel de nition

The control panel editor is used to position the various contol panel elements
on the control panel. The toolbar is shown in the gure 6.12 where, apart from
the usual buttons, we have two main buttons:

the green button is used to add an output view to the control panel,
the yellow button is used to add a parameter editor to the contol panel.

The gure 6.13 shows a control panel with two parameter editas (yellow)
and one output view (green).

6.4.1 Drawing an output view

To draw an output view in a given place it is enough to click on the corresponding
button and then at the place where to put the output view, or to right click at
the desired place to show up the same toolbar as a popu menu. Aew dialog
is opened as illustrated in the gure 6.14.

This dialog is composed of two parts:

the upper part lists all the output views available in the selected control
panel. Selecting one of these and typing either return or pusing the
Existing button shall draw the corresponding output view at the sele¢ed
place.

the down part is used to create a new output view with a drop dow menu
from which to select one of the output view de ned in the concrete model
graph panel (see 6.3).

6.4.2 Deleting an output view

An output view can be deleted by selecting it and selectingRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output view must be removed fromthe control
panel:

if yes, the output view is removed both from the drawing and the list of
output views de ned for the control panel,

otherwise, only the drawing is removed but the output view remains un-
changed.
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Figure 6.13: The control panel view.

Figure 6.14: The creation dialog for an output view.
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Figure 6.15: The creation dialog for a parameter editor.

6.4.3 Drawing a parameter editor

To draw a parameter editor in a given place it is enough to cli& on the corre-
sponding button and then at the place where to put the parameer editor or to
right click at the desired place to show up the same toolbar as popu menu. A
new dialog is opened as illustrated in the gure 6.11.

This dialog is composed of two parts:

the upper part lists all the parameter editors available in the selected
control panel. Selecting one of these and typing either rettn or pushing
the Existing button shall draw the corresponding parameter editor at
the selected place.

the down part is used to create a new parameter editor with twodrop
down menus:

the rst one is for selecting one of the individuals created h the
concrete model panel (see 6.1.1);

the second one is for selecting one of the attribute to edit ofthe
individual.

6.4.4 Deleting a parameter editor

A parameter editor can be deleted by selecting it and selectig Remove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the parameter editor must be removed from the
model:

if yes, the parameter editor is removed both from the drawingand the list
of parameter editors de ned for the model;

otherwise, only the drawing is removed but the parameter edior remains
unchanged.



Chapter 7

Some examples

7.1 Introduction

This chapter is considered as a stepwise tutorial to develogyour own models.
All these examples are provided in the distribution in the example folder.

7.2 The rolling ball example

As an example, we shall model a simple system composed of oraling ball and
a kicker. This example allows the illustration of a combination of continuous
and discrete time:

the rolling ball is submitted to uniform movement described by the fol-
lowing equations:

X(t)= Xo+ vx  ty(t)=yo+ v, t

at random time, the kicker computes a random two-dimension& vector
<ky;ky > which is sent to the ball to change its trajectory in the following
way:

Vx = Wy + K vy = vy + ky

This example has been programmed in Java and the user could ¢k at
the source code of the packagexample where the classe£lock, RollingBall
Kicker and Observer have been de ned. To runit, open the projectexample.pml
in the folder example. The project contains two conceptual models:

Examplel: is the conceptual model of the rolling ball example;

Example2: is the conceptual model of a cellular automata for simulatirg re
spread.

To the conceptual models correspond two concrete models daing an instan-
tiation, the de nition of some outputs and the associated catrol panel. To
actually run the simulation, select the corresponding simuation model and suc-
cessively push on the buttonsReset, Initialize and then Step as many time
as you want (or Runafter having entered an end date.
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Figure 7.1: The conceptual model for a kicked and observed fting ball.

7.2.1 De ning the conceptual model

The conceptual model will be composed of two categoriesRollingBall and
Kicker . The RollingBall is characterized by four attributes: two for the initial
position (x0 and y0 corresponding toxy and yg) and two for the speed (x and
vy corresponding tovy and vy). The Kicker is characterized by one attribute:
the seed of its random generator used for the time of kickinghe ball and the
generation of the random vectot.

If we want to visualize the position of the ball, the event-based nature of the
simulation will only be able to provide state changes when tte ball is kicked.
To see the ball rolling between two successive kicks, we hawe sample the
trajectory. In order to do that, a third category is added to t he model to
sample the trajectory by asking at each xed time step to the ball its position.
The resulting ontology in shown in gure 7.1.

In addition, you have the de nition of three relations:

kicked which a relation of Kicker to send a kick to aRollingBall . Note
that a Kicker can kick simultaneously any number of balls.

observer which is a port of RollingBall to send its position to an ob-
server (and it can have as many observers as it wants).

observed which is a port of Observer to send a request for position (it
will always be a logical in uence, of course).

The parameters can be edited (added, changed or removed) tbugh the
category editor as shown in the gure 7.2.

The relations (i.e. the de nition of the relation name, cardinality and type)
can be either drawn through the graphical editor or entered nh the category
editor dialog as in gure 7.3. If the relation are de ned by th e category editor,
they will not show up in the graphical editor. They can be visualized by drawing
an arc and specifying an existing link as shown in gure 7.4.

At that stage, the structure of the conceptual model (i.e. the ontology) is
entirely de ned: the categories, attributes and relations.

7.2.2 De ning the dynamics

For de ning the behavior, you have to de ne:

the incoming and outgoing in uences;

1To put the seed as a parameter is recommended if one wants to co ntrol the outcome of
the simulation, i.e. to produce exactly the same result for e ach simulation.
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Figure 7.2: The conceptual model for a rolling ball with the atribute panel.

Figure 7.3: The rolling ball category with the relations panel.

Figure 7.4: De nition of an arc from an existing relation de nition
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Figure 7.5: The rolling ball category with the probes panel

the probes;
the M-DEVS functions.

We assume thatRollingBall receives kicks and observation requests and sends
positions, Kicker sends kicks and the Observer sends observation requests and
receives positions. The checking of the consistency betweewhat is sent or
received is currently very loose but can be reinforced by setting the verify
check-bon in the scheduler. In a future release the possiliy to check for
model consistency when de ning the conceptual model will beenforced (at least
optionally).

We shall de ne two identical probes: one for theRollingBall  to signal the
state change (new x0, y0, vx and vy, see gure 7.5) and one forhte Observer
for the ball position, each time it receives the actual coordéhates.

These declarative parts of the dynamics being made, we haveotfocus on
specifying each of the function of the corresponding M-DEVSnodel. The gure
7.6 shows how to de ne the initialization of the rolling ball. In the shown panel,
the Scripting behavior has been selected, which allows to specify the behiar
with script languages. In this case, the Java scripting langiage has been selected
(Javalnterpreter ).

Note that we distinguish the attributes and the state of the model. The at-
tributes de ne the structure of the ball for an external observer and corresponds
semantically to the speci cation of its initial state. The s tate itself changes con-
tinuously, spontaneously or in response to incoming in uertes. In this case the
state is created and initialized from the parameters.

The gure 7.7 shows the code for handling incoming external m uences.
The principle is to loop through the set of inuences (put in the variable
externallnfluences ), to check its type for each one and compute the state
change accordingly. Note that after the state change, a prob value is issued to
update all the possible visualization windows.
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Figure 7.6: The rolling ball category with the initialize pa nel

The user is asked to further explore the model which is availble as an
example, to see how the behaviors are de ned in the various sipting languages.

7.2.3 De ning the concrete model

As said before, the de nition of the structure and dynamics is part of the concep-
tual model and cannot be run directly. From the conceptual madel, a concrete
and simulatable model can be instantiated. You have to open aoncrete model
editor. At the top of the right panel, you have a list of conceptual models you
can take your de nitions from. The gure 7.8 shows a window in which a model
has been built by creating an instance of each of the categas (an instance of
clock has been added to de ne the time rate at which the obserer samples the
rolling ball). In this gure, each port is linked to the prope r entity. The drawing
panel uses a modi ed UML object diagram. The links are named fhich is not
the case in UML). As in UML, the name of the instances is optioral and for
documentation purpose only.

The actual structure of an individual is not only composed by its links but
also by the values of its attributes (interpreted as the speccation of the initial
state of the simulation). By editing an individual, the dial og of the gure 7.9
appears where you can change the name of the individual (optinal), trace or
untrace the individual?, de ne or change the attribute values.

2while tracing in the scheduler traces the posted and sent in  uences, tracing an individual
traces the call to the M-DEVS functions.
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Figure 7.7: The rolling ball category with the external tran sition panel

Figure 7.8: The concrete model as an instance of the concepimodel.
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Figure 7.9: The edition dialog for an individual.

Figure 7.10: The view on the rolling ball state

Once all the model has been instantiated and all the parametes de ned (a
further version should also check for the model completena$, the user can open
the scheduler, select the model to run, initialize and run it either step by step
or in a single run until the end date is reached as described imore details in
the chapter 8.

In addition, a visualization window can be opened. For examje, a pos-
sible view looks like the gure 7.10 and is updated each time e individuals
changé€. The top left panel displays the clock value, the top right panel displays
KICKED for some time each time the kicker is issuing a kick, the bottom left
panel displays the rolling ball state (updated only when kided) and the bottom
right panel displays the actual position of the ball at each ime step.

Such a display cannot be created interactively yet. A numberof visualiza-
tion items can be created, positioned within a control boardand linked to the
individuals receiving its probes and using them to update tre visualization. An
editor for such a control panel (including the possibility to change the parame-
ters shall be available in a near future.

7.3 The stupid model

In [13], it is proposed as series of simple multi-agent modslof increasing com-
plexity to both tach and benchmark the modelling and simulation platforms.
It is used here to illustrate designing models using Mimosa.We shall use the
Python scripting language for the detalils.

All the examples which follow can be loaded at once by openinghe project
StupidModel in the example folder. This project contains the eight versions

3Sorry if we did not program a panel to visualize trajectories  yet.
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with their corresponding concrete and simulation models. Eel free to lokk at
and to try each of these.

7.3.1 Stupid model 1

A number of bugs are randomly positioned in a toroidal grid ard move at xed
time steps into a random position within a +/- 4 cells distance.

De ning the conceptual model

As suggested in [9], we propose for conceptual modeling to ®nsively use the
notions of wholes, parts and relations. Hence bugs are partsf a bug popu-
lation, cells are part of a space, and a position is a relatiormapping the bug
population within the space. Accordingly, we propose a coneptual model with
ve categories:

BugPopulation : is a population of bugs of which attribute is the number of
bugs;

Bug: is a bug with a given id and, of course, a part of a bug populatio;
Space: is a set of cells of which attributes are the number of lines ad columns;
Cell: is a cell with given x,y coordinates and, of course a part of agace;

Position: is a mapping from the bugs into the cells giving the individud posi-
tion of each bug. It also encodes the topology of the space byedhing the
cells neighborhood. We provide a seed attribute for its randm generator.

The resulting conceptual model is shown in the gure 7.11. The position refer-
ences both the bug population and the space. Each bug knows ¢hposition to
be able to position itself and move.

From the dynamical point of view, we shall describe in turn eah of the
category.

the bug population has only the function to create the bug poplation.
Therefor we de ne the initialize function as follows:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel1.Bug",\
parameters(pair("no",i)))
linkPort(portRef(p,'position’),portRef('observer’))
sendProbe(‘population’,nbBug)
sendLogical(‘observer','populationSize',nbBug)

The rst four lines are used to generate the bug population. The last two
lines informs the position, respectively any probe obserweof the popula-
tion size.

the space is doing exactly the same for the cells:
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Figure 7.11: The stupid conceptual model 1

for i in range(nbLine):
for j in range(nbCol):
addPort(port(‘cell',i*nbLine+j),"StupidModell1.Cell" A
parameters(pair('x',i),pair('y',j)))
sendProbe('space’,nbLine,nbCol)
sendLogical('observer','spaceSize',nbLine,nbCol)

a bug has in charge to position itself randomly at initialization (it could
also be done by the position!), and to move at each time step. & initial-
ization, it just asks to the position to do it 4:
sendLogical('position’,'randomPlace’,no)

For moving, it is a combination of three functions: j to say when to
perform the next move, x to ask the position to move the bug and iy
to perform the internal transition. Given that the only acti on to do is to
ask the position to move the bug, the latter function does nohing. So we
dene gx:

sendExternal('position’,'randomMove’,no,4)

assuming that position shall perform the random move within the given
distance (4) and jy :

sendinternal(1,'moveRandom’)

a cell is doing strictly nothing.

4notice that it is a logical in uence because it is just used to initialize the simulation model:
it is not properly speaking an action
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the position is doing all the work by managing the position ofeach bug and
by positioning and moving the bugs around on request. The inialization
prepares the needed structures and functions:

populationSize = 0

spaceWidth = 0

spaceHeight = 0

positions = {}

random = newRandom(seed)

def put(id,x,y):
positions[id] = (x,y)
sendProbe(‘dPosition',id,x,y)

In particular, a function to put a bug in a given place is de ned and
just adjusts the table of positions and signals the move to aw interested
observer. The only external in uence it receives is the regest for random
MOoVeS, SO ¢ IS de ned as:

for inf in getinfluences('randomMove'):

id,amount = contentOf(inf)
X,y = positions]id]
incr = nextint(random,amount)
if nextBoolean(random):

newX = (x+incr)%spaceWidth
else:

newX = (x-incr)%spaceWidth
incr = nextint(random,amount)
if nextBoolean(random):

newY = (y+incr)%spaceHeight
else:

newY = (y-incr)%spaceHeight
put(id,newX,newY)

The move is randomly generated according to the toroidal grdl. Finally,
the position must register the population and grid sizes as wll as initialize
the bugs initial positions by de ning i :

for inf in getinfluences('populationSize’):
populationSize, = contentOf(inf)
for inf in getinfluences(‘'spaceSize"):
spaceHeight,spaceWidth = contentOf(inf)
sendProbe('dSize',spaceHeight,spaceWidth)
for inf in getinfluences(‘'randomPlace’):
if type(inf,'randomPlace’):
id, = contentOf(inf)
X = nextint(random,spaceWidth)
y = nextint(random,spaceHeight)

put(id,x,y)

Notice the possibility to decide the order in which to handle the in u-
ences. Here the size declarations are handled before positing the bugs,



CHAPTER 7. SOME EXAMPLES 71

Figure 7.12: The concrete model 1

although all these in uences are received at once. For simjgity, we do
not test whether a cell is already occupied.

De ning the concrete model

Given that the bug population and the space automatically ganerate the bugs
and the cells. It is enough to de ne the bug population, the s@ce and the
position, as well as de ning the initial values. The resulting concrete model is
illustrated in the gure 7.12. In addition, we de ne a probe o bserver to visualize
the position of the bugs in the grid space. The Discrete2DSpeeView (see 6.3.2)
is used for this purpose.

Finally a control panel containing the Discrete2DSpaceViev is de ned (see
7.13).

Running the simulation model

Finally, the concrete model is used to generate the simulatn model for the
scheduler. The scheduler reset button is used to actuallygenerate the ini-
tial simulation model and the control panel. The init butt on initializes the
simulation model calling the initialization of each initial entity (i.e. the bug
population, the space and the position). It is at this stage that the bugs and
cells are created. Finally, the simulation model is ready torun (see gure 7.14).

7.3.2 Stupid model 2

The bugs are allowed not only to move but also to grow startingfrom a size of
1 increased incrementally by 1. It is visualized as a changigp shade color of the
bugs in the control panel.
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Figure 7.13: The concrete model 1 control panel

Figure 7.14: The simulation model 1 control panel
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Figure 7.15: The conceptual model 2

De ning the conceptual model

The only change in the conceptual model structure is the addion of a relation
from the bug to the population in order to be able to inform it o f the size changes
(see gure 7.15).

The only change concerns the bug population to create this ne link and
the behavior of each individual bug. It touches:

the initialization of the bug population:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel2.Bug",parameters(pair("no",i ))
linkPort(portRef(p,'position’),portRef('observer’))
linkPort(portRef(p,'population’),'self")
sendProbe(‘objectLayers','bug’,'size")
sendLogical('observer','populationSize’,nbBug)

where a new port link is created from each bug to the populatio (notice
the use of the always de ned port self ).

the initialization of the bug for setting the initial size to 1:
sendLogical('position’,'randomPlace’,no)

size = 1

sendLogical('population’,'size’,no,size)

the i of the bug to emphasize the double activity:

sendIinternal(1,'moveRandomAndGrow")

ext Of the bug remains the same
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Figure 7.16: The concrete model 2

sendExternal('position’,'moveRandom’,no,4)
but the iy of the bug is now doing something:

if type(getinternalinfluence(),'moveRandomAndGrow'):
size = size+l
sendLogical('population’,'size’,no,size)

Provision is made for the possibility to have a variety of internal behaviors,
hence the test.

Given the logical in uences sent to the bug population, thee must be
handled appropriately by de ning the o4 Of the bug population:

for inf in getAllinfluences():
if type(inf,'size"):
id,size = contentOf(inf)
sendProbe(‘objectState’,'bug',id,'size’,size)

Both in initialization and in the oy of the bug population, probes are sent for
the visualization of the bug sizes.

De ning the concrete model

In order to account for the bug growth, the concrete model is Bghtly changed by
adding a link between the bug population and the visualizer h order to monitor
the changes in the bug size. The result is illustrated in the gure 7.16. The
gure 7.17 shows the de nition of the color codes parameterzing the visualizer.

Running the simulation model

The gure 7.18 shows the resulting visualization while running the simulation.
A colored shadow appears and is modi ed while the bugs are gming. It il-
lustrates the possibility to get the probes from various souces to compose a
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Figure 7.17: De ning the visualization of the bug size

single visualization in addition to the possibility to send probes to a variety of
observers.

7.3.3 Stupid model 3

The cells contain food of which quantity is growing over time The bugs are
eating what is on the current cell and grow accordingly.

De ning the conceptual model

The resulting conceptual model is shown in the gure 7.19. Tke only modi -
cation is the reciprocal relation between the bug and the célbecause of their
interactions.

Because of the important induced changes, we shall descrikegain in turn
each of the category.

the bug population does not incur any change because everyithg is in
place for monitoring the bug size changes.

the space has to work the same way as the bug population for matoring
the cell food availability. Consequently, a link has to be ceated from each
cell to the space:

for i in range(nbLine):
for j in range(nbCol):
cell = port('cell',i*nbCol+j)
addPort(cell,"StupidModel3.Cell",\
parameters(pair('x',i),pair('y",j)))

linkPort(portRef(cell,'space),'self") # <= HERE

sendProbe('cellLayers','food")

sendLogical('observer','spaceSize',nbLine,nbCol)

As for the bug population, the space is informed of the food axilability
changes through logical in uences to be handled by the o4 function:

for inf in getAllinfluences():
if type(inf,'food’):
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Figure 7.18: The simulation model 2 control panel

Figure 7.19: The stupid conceptual model 3
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x,y,food = contentOf(inf)
sendProbe('cellState’,x,y, food",food)

a bug has now in charge to de ne its size and maximum consumptin rate
at initialization:

size = 1

maxConsumptionRate = 1
sendLogical('position’,'randomPlace’,no)
sendLogical('population’,'size’,no,size)

For moving and eating, it is again the combination of three functions:

int to say when to perform the next actions, ¢4 to ask the position to
move the bug and the cell to get food, and i,y to perform the internal
transition. Given that the only actions are requests to others, the latter
function does nothing as in function one. So we de ne ey :

sendExternal('position’,'randomMove’,no,4)
sendExternal('cell',)consume’,;maxConsumptionRate)

and -
sendlinternal(1,'moveRandomAndEat’)

Finally, the cell shall inform the bug of the eaten quantity by a logical
in uence to be handled by o4:

for inf in getAllinfluences():
if type(inf,'consumed'):
consumed, = contentOf(inf)
size = size+consumed
sendLogical('population’,'size',no,size)

The bug grows according to the actually received food. The iruence
could have been an external in uence, but, because an exteai in uence
is only issued at the next transition, the food would have bea consumed
only at the next step.

a cell has now a certain quantity of food which is growing ovetime. Ad-
ditionally, it has to react to food consumption requests. The initialization
becomes as follows:

availableFood = 0

maxFoodProduction = 0.1

rand = newRandom(6538672547)
sendLogical('space’,'food',x,y,availableFood)

Notice that the growth is random within a given range (maxFoodProduc-
tion). The spontaneous growth is managed by the usual functns jy :

sendInternal(1,'grow')
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and it :

availableFood = availableFood+maxFoodProduction*nextD ouble(rand)
sendLogical('space’,'food',x,y,availableFood)

The reaction to the consumption request is naturally manage by e :

for inf in getAllinfluences():
if type(inf,'consume’):
request, = contentOf(inf)
consumption = min(request,availableFood)
sendLogical('bug','consumed',consumption)
availableFood = availableFood-consumption
sendLogical('space’,'food',x,y,availableFood)

where the consumption depends on both the request and the aiable
food. However, it could happen that the spontaneous growth ad the
consumption occurs at the same time, provoking a con uent transition
ext - It combines both jy and ¢ and decides in which order things
happen (in this case growth is before consumption):

for inf in getAllinfluences():
if type(inf,'consume’):

availableFood = availableFood+maxFoodProduction*nextD ouble(rand)
request, = contentOf(inf)
consumption = min(request,availableFood)
sendLogical(‘bug','consumed',consumption)
availableFood = availableFood-consumption
sendLogical('space’,'food',x,y,availableFood)

the position incurs only one change: changing the positionfoa bug implies
to modify the reciprocal links between the bug and the cell itis on:

def put(id,x,y):
bug = port('bug',id)
newCell = port(‘cell',y*spaceWidth+x)
if id in positions:
oldX,oldY = positions]id]
oldCell = port('cell',oldY*spaceWidth+oldX)
removePort(portRef('population’,bug,'cell’))
removePort(portRef('space’,oldCell,'bug'))
positions[id] = (Xx,y)
linkPort(portRef('population’,bug,'cell’),portRef(’ space',newCell))
linkPort(portRef('space’,newCell,'bug’),portRef('po pulation’,bug))
sendProbe(‘dPosition’,'bug',id,x,y)

It illustrates the full power of the link references to remove and create
links dynamically throughout the simulation.
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Figure 7.20: The concrete model 3

De ning the concrete model

In order to account for the cell food availability, the concrete model is slightly
changed by adding a link between the space and the visualizén order to also
monitor the changes in the food availability. The resultis illustrated in the gure
7.20. The gure 7.21 shows the de nition of the color codes paameterizing the
visualizer.

Running the simulation model

The gure 7.22 shows the resulting visualization while running the simulation.
The cell colors are shown according to the quantity of availdle food. Once
again it illustrates the possibility to combine multiple sources of data within a
single visualization.

7.3.4 Stupid model 4

This version does not add any new behavior but provides the pssibility to
monitor individually the cells and bugs through the grid int erface.

De ning the conceptual model

The conceptual model structure does not change and remaindhe one shown in
the gure 7.19. The grid visualizer as described in 6.3.2 akady provides the
possibility to probe the cells and objects which are visualied. However, for it
to work:

the BugPopulation and the Space must provide the ports to acess the
entities to monitor by using the probes 'cellEntity',<x>,<y>,<port>
and 'objectEntity’,<type>,<id>,<port> as described in 6.3.2.

each cell and bug must also send probe to advertise their statchanges.

Accordingly:
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Figure 7.21: De ning the visualization of the food availability

Figure 7.22: The simulation model 3 control panel
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the bug population does inform the probe observer for each ats bugs:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel4.Bug",parameters(pair("no",i )
linkPort(portRef(p,'position’),portRef(‘'observer’))
linkPort(portRef(p,'population’),'self)
sendProbe(‘objectEntity','bug',i,p) # <= HERE
sendProbe(‘objectLayers','bug’,'size")
sendLogical('observer','populationSize’,nbBug)

the space has to do the same thing for its cells:

for i in range(nbLine):
for j in range(nbCol):
cell = port('cell',i*nbCol+j)
addPort(cell,"StupidModel4.Cell",\
parameters(pair('x',i),pair('y",j)))

linkPort(portRef(cell,'space"),'self")
sendProbe('cellEntity',i,j,celll # <= HERE

sendProbe('cellLayers','food")

sendLogical('observer','spaceSize',nbLine,nbCol)

each bug has to send probes when its state changes in its irafization:

size = 1

maxConsumptionRate = 1
sendLogical('position’,'randomPlace’,no)
sendLogical('population’,'size’,no,size)
sendProbe('size',no,size) # <= HERE

and in its growth behavior ( jog):

for inf in getAllinfluences():
if type(inf,'consumed’):
consumed, = contentOf(inf)
size = size+consumed
sendLogical('population’,'size',no,size)
sendProbe('size',no,size) # <= HERE

and the same for the cells, as an example, in initialize:

availableFood = 0

maxFoodProduction = 0.1

rand = newRandom(6538672547)
sendLogical('space’,'food',x,y,availableFood)
sendProbe(‘food',x,y,availableFood) # <= HERE

but also in ext, int and con-
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Figure 7.23: Choosing a probe observer for cells and bugs

De ning the concrete model

The concrete model remains strictly the same.

Running the simulation model

The gure 7.23 shows dialog which appears when clicking on aail. There are
two drop down menus:

the top one is a list containing the clicked cell if any (thereis no cell in a
continuous space) and the objects in the cell or around the atk position.

the bottom is a list of available probe observers for monitoing the chosen
object.

Clicking on the add button creates and connects the choserprobe observer.

7.3.5 Stupid model 5

This version still does not add any new behavior but providesthe possibility to
parameterize the simulation by the initial number of bugs, the maximum daily
food consumption of the bugs and the maximum food productionof the cells.

De ning the conceptual model

The conceptual model structure changes slightly to have themaximum food

consumption and food production appear as attributes in therelevant categories

(see 7.24). Now each cell and bug has the maximum food consutign and

production as attributes, as well as the bug population and pace because these

two last categories are in charge of initializing the bugs ad cells respectively.
Accordingly:

the bug population does initialize each bug:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel5.Bug",\
parameters(pair("no”,i),\
pair("maxFoodConsumption”,maxFoodConsumption))) # <= HERE
linkPort(portRef(p,'position’),portRef(‘'observer’))
linkPort(portRef(p,'population’),'self)
sendProbe(‘objectEntity’,'bug',i,p)
sendProbe(‘objectLayers','bug’,'size")
sendLogical('observer','populationSize’,nbBug)
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Figure 7.24: The stupid conceptual model 5

the space has to do the same thing for its cells:

for i in range(nbLine):
for j in range(nbCol):
cell = port(‘cell',i*nbCol+j)
addPort(cell,"StupidModel5.Cell",\
parameters(pair('x',i),pair('y",j),\
pair('maxFoodProduction',maxFoodProduction))) # <= HER
linkPort(portRef(cell,'space"),'self")
sendProbe(‘cellEntity',i,j,cell)
sendProbe('cellLayers','food")
sendLogical('observer’,'spaceSize',nbLine,nbCol)

each bug and each cell has now this variable de ned and, thefere, it is
no longer necessary to initialize it separately.

De ning the concrete model

Given the need to de ne the maximum food production and consunption for

the space and the bug population respectively in addition tothe initial bug

population, the concrete model includes these two new attiiutes. The result
is illustrated in the gure 7.25. The control panel is now changed to add three
new parameters editor (see 7.25). In e ect, any attribute ofthe concrete model
can be associated to an editor to be put on the control panel iheeded.
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Figure 7.25: The concrete model 5

Figure 7.26: The control panel 5 with the attribute editors
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Figure 7.27: The control panel

Running the simulation model

The gure 7.31 shows the control panel in which the three edibrs for the pa-
rameters are displayed and can be changed before initializg the model (after
initialization, the changes in the parameter values are no dénger taken into ac-
count until the next initialization).

7.3.6 Stupid model 6

This version still does not add any new behavior but providesthe possibility to
display an histogram of the bug sizes.

De ning the conceptual model

The conceptual model structure does not change and remainshe one of the
gure 7.24. The only dierence is for the bug population to compute a size
distribution and to signal the changes of this distribution to any interested
probe observer:
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in the bug population two data structures are added: one for ecording
the bug sizes and the histogram itself (here with 10 bins):

import math
bugSizes = []
sizeHisto = ]
for i in range(10):
sizeHisto.append(0)
sendProbe(‘category',i,'size',0)
for i in range(nbBug):
p = port("bug",i)
bugSizes.append(0)
addPort(p,"StupidModel6.Bug",\
parameters(pair("no",i),\
pair("maxFoodConsumption”,maxFoodConsumption)))
linkPort(portRef(p,'position’),portRef(‘'observer’))
linkPort(portRef(p,'population’),'self")
sendProbe(‘objectEntity’,'bug',i,p)
sendProbe(‘objectLayers','bug’,'size")
sendLogical(‘observer','populationSize',nbBug)

Each time the sizes of the bug sizes are signaled through lagil in uences,
the histogram is updated in oq:

for inf in getAllinfluences():
if type(inf,'size"):
id,size = contentOf(inf)
bugSizes[id]=size
sendProbe(‘objectState’,'bug',id,'size’,size)
for i in range(len(sizeHisto)):
sizeHisto[i] = 0
for size in bugSizes:
if size>10:
sizeHisto[9] += 1
else:
sizeHisto[int(size)] += 1
for i,v in enumerate(sizeHisto):
sendProbe(‘category',i,'size’,v)

Nothing else is needed. Notice that the systematic use of agggates like the
bug population and the space simpli es dramatically how to compute aggre-
gated values as the histogram. A similar computation could & done for the
distribution of food availability.

De ning the concrete model

In the concrete model, one must add a new visualizer for the stogram and link

it to the bug population instance. The result is illustrated in the gure 7.28. The

histogram visualizer is described in the section 6.3.2 andan be parameterized
as shown in the gure 7.25. The control panel is now changed t@dd three new
parameters editor (see 7.31). In e ect, any attribute of the concrete model can
be associated to an editor to be put on the control panel if neded.
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Figure 7.28: The concrete model 6

Figure 7.29: The parameters for a histogram visualizer
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Figure 7.30: The control panel 6 speci cation with the new histogram

Running the simulation model

The gure 7.30 shows the control panel in which the new histogam is shown
after 18 steps.

7.3.7 Stupid model 7

This version illustrates the possibility to stop the simulation when some condi-
tions occur. In this case the condition is when a bug gets a cain size.

De ning the conceptual model

The conceptual model structure does not change and remainshe one of the
gure 7.24. The only di erence is for the bug stop the simulation when a given
condition arises:

in the bug growth (i.e. in 1og) the condition is tested and the simulation
stopped is met:

for inf in getAllinfluences():
if type(inf,'consumed"):
consumed, = contentOf(inf)
size = size+consumed
sendLogical('population’,'size’,no,size)
sendProbe('size',no,size)
if size > 3: # <= HERE
stop()
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Figure 7.31: The control panel with the histogram

Running the simulation model

The simulation shall stop whenever the end date or the condibn is met, either
case comes rst. If one want the simulation to stop only when te condition is
met, one must provide a very large end date. It is thought as biang a security
in case the condition is never met.

7.3.8 Stupid model 8

This version illustrates the possibility to output informa tion to a le. In this
case, it is desired to output the minimum, mean and maximum bug size at each
cycle.

De ning the conceptual model

The conceptual model structure does not change and remainshe one of the
gure 7.24. The only di erence is the computation of the desired values:

all the necessary information is already recorded in the bugpopulation for
the histogram. It is easy to also compute the min, max and mearfrom the
available information each time the sizes change injog (the management
of the histogram has been removed for readability):

for inf in getAllinfluences():
if type(inf,'size"):
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Figure 7.32: The concrete model 8

id,size = contentOf(inf)
bugSizes[id]=size
sendProbe(‘objectState’,'bug',id,'size’,size)
min = max = bugSizes|[0]
mean = 0
for size in bugSizes:
mean += size
if size<min:
min = size
elif size>max:
max = size
mean = mean/len(bugSizes)
sendProbe('sizes’,min,mean,max)

De ning the concrete model

It is enough to add to the concrete model a new probe observeof the output
of the probe information to a le. A probe observer is already de ned for this
purpose and described in the section 6.3.2. The resulting cerete model is illus-
trated in the gure 7.32. The probe observer can be parameteirzed as illustrated
in the gure 7.33. Here we choose to not output the dates of oaarrence.

Running the simulation model

The result of the simulation on 10 steps is shown in gure 7.34
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Figure 7.33: The le output parametrization

Figure 7.34: The result of the simulating the stupid model 8
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Chapter 8

The scheduler

This chapter is really about running simulations. The concrete models one
wants to run are available from the drop down menu on the top ofthe scheduler
window (see 8.1). All the models de ned in the concrete modekditor are shown
in this drop down menu to select from. Additionally, les can be loaded within

the scheduler if saved in the scheduler format from the con@te model editor.

This possibility is o ered to deliver turn key models to be run independently of
all the previously described editors.

A concrete model has to be selected from the list on the left. fie initialize
button shall actually generate the simulation model out of the concrete model
description. The rst step shall initialize the simulation model (the time shall
remain at 0). Further steps shall advance the time dependingon the closest
scheduled next date.

In the scheduler menu, the rst item opens an inspector to visialize the list
of all created entities (see 8.2). This list is updated durirg the simulation to
re ect the current list of entities. Clicking on an entity op ens an entity inspector
to monitor what is going on in the given entity (see gure 8.3). The panel is
divided in four panes:

the rst pane lists the current parameters of the entity and t heir values;

the second pane is the list of current ports with the list of enities their
are associated to;

the third pane is used for managing the probe observers;

nally the fourth pane displays the warning messages when neessary.

Figure 8.1: The scheduler window.
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Figure 8.2: The main inspector window.

The most important pane certainly is the third pane because f monitors
what is going on inside of the inspected entity. It is composd of a drop-down
menu for selecting a probe observer and a panel to display thprobe observer
when it is displayable. By default, two probe observers are @ailable:

the probe view which displays the probes when received one taf the
other. A button to clear the display is available if necessay;

the probe output which send the probes to a le. When selectig the
probe observer, a le name as well as a separator string is ask. The
resulting le can be loaded in excel or any similar tool.

At each time step it is possible to open a window showing the sucture of
the simulated model as a graph where each node is an entity andach edge is
a connection between the entities. The corresponding windwe is shown in the
gure 8.4 and is made of three parts:

The upper part is a drop down menu to select the kind of graph maipu-
lation: either transforming for changing the place of the glaph, zoom it in
or out, etc., or picking for selecting one node and move it onhe screen;

The graph itself;

A button to switch between two algorithms to layout the graph. Choose
the one which seems more appropriate to visualize the model.
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Figure 8.3: The entity inspector window.
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Figure 8.4: The graph of the simulated model.
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Appendix A

Introduction to Scheme

Scheme is a functional language close to Lisp but with a purersemantics.
Roughly speaking only two constructs are provided in scheme

the function (called procedure in the Scheme community) written: (lambda
<parameters> <body>) where parameters is a list of parameter names
and body is a sequence of expressions.

the application written (<function> <arg ;>:::<argn>) where function
is a function as de ned before andarg; are expressions.

Of course, anexpressionis either a function or an application. This seems overly
simplistic but it has been shown that it is enough to express ay computation
one could dream of. Nevertheless, the resulting syntax wodlbecome unreadable
for any reasonable computation. The simplest way to overcora this problem
is to provide the possibility to associate names to expresshs with the form:
(define <name> <expressions>) . A number of names have been prede ned
in Scheme for all the current arithmetic operations as well & the operations on
very common data structures.

By the way, define is not a function name but the name of a syntactic
form which is transformed behind the scene in a proper appliation. The set
of possible syntactic forms can itself be extended, parametizing the Scheme
interpreter with high level constructs at will (not explain ed in this introduction).

A structure or object is also called a literal expression is of the form{quote
<something>) or (alternatively) '<something> . The somethingis either:

a number

#t and #f

a character #n..
a string "..."

a symbol

a pair (<something 1> . <something ,>) or a list (<something 1>: : :<something,>)

a vector #(<something ;>: : :<something,>)
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The rst four categories do not need the quote because they dkeevaluate, i.e.
their value is themselves.

Finally, an additional power is acquired by the relationships between struc-
tures (or objects) and expressions. Of course, expressiotrmnsform structures
into structures (it is what functions or all about). The nice thing is that (eval
<exp>) transforms the structure produced by the expression into anexpres-
sion...and computes its value as well. Therefore, one can e programs pro-
ducing programs which are further executed.

This appendix is not suppose to give a full course on Scheme bjust pro-
vide a summary of the most common de nitions for reference, nicluding the
de nitions introduced for use within Mimosa.

A.1 Control syntax

As in any language, there are some constructs for the usual atrol structures:
the sequence, the conditional and the loop.

(define <symbol> <exp>) the de nition
(set! <symbol> <exp>) to change the de nition
(begin <exp 1>:::<exp,>) the sequence of expressions

(if <exp> <exp tue > <€XPase >) | the conditional

(cond (<exp 1> :::):::(else :::)) | the multiple contitional
(or <exp 1>:::<exp,>) sequence until true
(and <expp>:::<expn>) sequence until false

The loop is more complicated with the form(do (<iter 1>:::<iter ,>) (<cond>

::1) :::) whereiter ; is a variable of iteration of the form (<var ;> <expnit >
<exXpstep >) With a variable name, an initialization expression and a st com-
putation expression, the condition expression must be truefor stopping the
iteration and the corresponding expressions are computedcaordingly.

Finally, one must introduce the binding construct to create local variables
for various purposes:

(let ((ssym 1> <exp>) :::) <expi>:::) parallel binding
(let* ((<sym 1> <exp;>) :::) <expi>:::) sequential binding
(letrec ((<sym 1> <exp>) :::) <expi>:::) complete binding

The main di erence is that the association of values to symbds are avalaible
from the body alone in the rst case, directly after the de ni tion (and then for
the next de nitions) in the second case and from the start in the third (allowing
self reference).

A.2 Booleans

There are two booleans #t and #f which are two symbols which ewaluates to
themselves. Apart from and and or, we also have the following functions:

(boolean? <exp>) tests if boolean

(not <exp>) the negation

(eq? <expi> <exp>) strict equality

(eqv? <expi> <exp>) slight extension of strict equality
(equal? <expi1> <exp>) | recursive (or structural) equality
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A.3 Numbers

Scheme recognizes the integers (e.g. 51236457), rationfdsy. 6235645/23672573),
reals (e.g. 4.6565e-3) and complex numbers (e.g. 3+5i). Thmain distinction

is between exact and inexact representations of these. Therede ned functions
are:

(number? <exp>) tests if number

(complex? <exp>) tests if complex

(real? <exp>) tests if real

(rational? <exp>) tests if rational

(integer? <exp>) tests if integer

(exact? <exp>) tests if exact

(inexact? <exp>) tests if inexact

(zero? <exp>) tests if zero

(positive? <exp>) tests if positive

(negative? <exp>) | tests if negative

(odd? <exp>) tests if odd

(even? <exp>) tests if even

(= x1::) equality

(< x1::) monotonically increasing

(> xp::3) monotonically decreasing

(<= X1::7) monotonically non decreasing
(>= x1::7) monotonically non increasing
(abs x) the absolute value of the number
(min x7::3) the min of the numbers

(max Xxi:::) the max of the numbers

(+ z1::3) the sum of the numbers

(- zg::2) the di erence of the numbers

* z1::2) the product of the numbers

(/ z1::2) the quotient of the numbers
(quotient  np ny) the quotient of the numbers
(remainder nj; ny) the remainder of the numbers
(modulo ni ny) the modulo of the numbers

(ged np::) the greatest common divisor of the numbers
(lem np::2) the lowest common multiple of the numbers
(numerator Q) the numerator of the rational
(denominator Q) the denominator of the rational
(floor  x) the oor of the real

(ceiling  x) the ceiling of the real

(truncate x) the truncate of the real

(round x) the round of the real

(real-part  2) the real part of the complex
(imag-part  z) the imaginary part of the complex

As well as most transcendant functions.

A.4 Dotted pairs and lists

The most common data structure in Scheme is the dotted pair witten (<left>
<right>) . Alist (<elt ;> <elt ;> ::: <elt ,>) is nothing but (<elt 1> .
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() :::) where() is the empty list. We have the

(pair? <exp>)
(null?  <exp>)
(list? <exp>)
(car <exp>)
(cdr <exp>)

(set-car! <pair> <obj>)
(set-cdr! <pair> <obj>)
(list <obj 1> ::: <objn>)

(length <list>)

(reverse <list>)

(list-tail <list> <k>)
(list-ref <list> <k>)
(append <list 1> ::: <list
(memq <object> <list>)
(memv <object> <list>)
(member <object> <list>)

tests if dotted pair
tests if empty list
tests if empty list or dotted pair

right of dotted pair or rest of list
modi es left of dotted pair
modi es right of dotted pair
creates a list

length of a list

reverse of a list

the k-th rest of a list

the k-th element of a list
append of lists

member using eq?
member using eqv?
member using equal?

n>)

left of dotted pair or rst element of list

An additional structure is the so-called a-list which is a list of pairs whosecar is
considered as a key and theedr as the associated value. The related functions

are.

(assq <object> <list>)
(assv <object> <list>)
(assoc <object> <list>)

has key using eq?
has key using eqv?
has key using equal?

and returns the found pair if any, #f otherwise.

A.5 Mimosa primitives

For Mimosa, we added three very common control structures fo better read-

ability:

(for (<var> <list>) <exp
(times (<var> <nb>) <exp

(when <cond> <exp>:::<exp,>)
(unless <cond> <exp 1>:::<expn>)

executes if #t
executes if #f
1>1::<expn>) | a simple loop over a list
1> <expn>)

a simpler loop repeated nb times

Some functions are provided to access the Mimosa random genagor:

(newRandom <seed>)

(nextBoolean <random>)
(nextint <random> <n>)
(nextDouble <random>)

creates a random generator
generates a boolean randomly
generates an integer from 0 to n
generates a real from 0 to 1

Finally, the access to the DEVS entity functionalities are provided as follows:

the variable self

is linked to the current Java state;

for each parameter, the variable with the same name is de nedvith the
associated value within the global context. It can additionally be accessed
through the function (getParameter <sym>) ;

when a script for a DEVS function is called, the global variale time is
linked to the duration elapsed since the last internal or exernal transition;
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each inuence is a Java object whose structure can be accestdy the
following functions:

(is <influence> <name>) #t if the in uence has the given name
(contentOf <influence>) the list of arguments
(getAllinfluences) the list of incoming in uences
(getinfluence <name>) the list of in uences of the given name
(getinternalinfluence) the internal in uence

the various events can be posted with the following functios:

(port <sym> nj:::np) creates a port
(sendExternal <port> <sym> <exp 1>!::<exp,>) | post an external event
(sendinternal n <sym> <exp>:::<exp,>) post an internal event
(sendLogical <port> <sym> <exp 1>:::<expn>) post a logical event
(reply <influence> <sym> <exp 1>:::<exp,>) reply to an in uence
(sendProbe <sym> <exp>:::<expn>) post a probe

A port can be a string or a symbol when there is no indices.

Finally the structure changes can be made through the folloving functions:

(portRef <port 1>:::<port n>) creates a port reference

(pair <sym> <exp>) creates a pair for the parameters
(parameters <pair 1>:::<pair ,>) creates parameters from the pairs
(addPort <portref> <category> <parameters>) creates a new entity

(linkPort <portref 1> <portref ,>) links referenced ports
(removePort <portref>) removes a references port
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Introduction to Smalltalk

Smalltalk is a pure object oriented language but here a simpled version of
which documentation can be found in [1] is used. The followig section provides
the primitives for Mimosa.

B.1 Mimosa primitives

In general, we de ned the classSelf with the class methods which are de ned
in this section.

For Mimosa, we added two methods to create and access local nables (it
is guaranteed to have a copy of these for each entity):

Self at: <var> put: <value> to create or change a local variable
Self @ <var> to access the local variable value
Some functions are provided to access the Mimosa random genagor:
Self newRandom creates a random generator
Self newRandom: <seed> creates a random generator
Self nextBoolean: <random> generates a boolean randomly
Self nextint: <random> in: <n> generates an integer from 0 to n
Self nextDouble: <random> generates a real from 0 to 1
Finally, the access to the DEVS entity functionalities are provided as follows:

for each parameter, the variable with the same name is de nedvith the
associated value within the local variables. It can be accesd through the
method Self @ <parameter>;

when a script for a DEVS function is called, the local variabk time is
linked to the duration elapsed since the last internal or exernal transition
and can be accessed bgelf @ <time>;

each inuence is a Java object whose structure can be accestdy the
following functions:

Self is: <influence> type: <name> True if the in uence has the given name
Self contentOf: <influence> the list of arguments

Self getAllinfluences the list of incoming in uences

Self getinfluences: <name> the list of in uences of the given name
Self getinternallnfluence the internal in uence

101
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the various events can be posted with the following functios where the

arguments are expected to be an array:

Self port: <name> index: <ind>

Self sendExternal: <port> name: <sym>

Self sendExternal: <port> name: <sym> withArguments: <arg
Self sendinternal: n name: <sym>

Self sendinternal: n name: <sym> withArguments: <args>
Self sendLogical: <port> name: <sym>

Self sendLogical: <port> name: <sym> withArguments: <args
Self reply: <influence> name: <sym>

Self reply: <influence> name: <sym> withArguments: <args>
Self sendProbe: <sym>

Self sendProbe: <sym> withArguments: <args>

creates a indexed port
post an external event
s> | post an external event
post an internal event v
post an internal event
post a logical event wit
> | post a logical event
reply to an in uence wit
reply to an in uence
post a probe without ar
post a probe

A port can be a string or a symbol when there is no indices.

Finally the structure changes can be made through the folloving functions:

Self portRef: <args>)

Self pair: <sym> with: <exp>)

Self parameters: <pairs>)

Self addPort: <portref> type: <category> parameters: <par
Self linkPort <portref 1> to: <portref ,>)

Self removePort: <portref>)

Self die

creates a port ref
creates a pair for
creates paramete
ameters>) | creates a new er
links referenced |
removes a refere
destroys itself
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