
MIMOSA user's manual
(Draft version 1.3.0beta)

Jean-Pierre Müller1

CIRAD-ES-GREEN
jean-pierre.muller@cirad.fr

December 16, 2009

1Associated researcher to LIRMM

Contents

1 Introduction 6
1.1 News . 7

2 Running Mimosa 9
2.1 Downloading Mimosa . 9
2.2 Launching Mimosa . 9
2.3 The menus . 10
2.4 The editor windows . 12
2.5 The scheduler window . 14
2.6 The project window . 15
2.7 The �les . 16

3 The ontologies 18
3.1 Individuals . 18
3.2 Links . 19
3.3 Attributes . 19
3.4 Categories . 20
3.5 Relations . 21

4 The conceptual model editor 23
4.1 The editor . 23
4.2 Category edition . 24

4.2.1 Drawing a category . 24
4.2.2 Editing a category . 25
4.2.3 Deleting a category . 25

4.3 Relation edition . 26
4.3.1 Drawing a relation . 26
4.3.2 Editing a relation . 27
4.3.3 Deleting a relation . 28

5 The behavior 29
5.1 Introduction . 29
5.2 The operational semantics . 30

5.2.1 The model . 31
5.2.2 The ports . 33
5.2.3 The in�uences . 33
5.2.4 The probes . 34
5.2.5 The time . 34

1

CONTENTS 2

5.3 The behavior speci�cation . 35
5.3.1 Programmatic speci�cation 36
5.3.2 Scripted speci�cation . 43
5.3.3 State charts . 45
5.3.4 Further extensions . 45

6 The concrete model editor 48
6.1 Individual edition . 49

6.1.1 Drawing an individual . 49
6.1.2 Editing an individual . 50
6.1.3 Deleting an individual . 51

6.2 Link edition . 51
6.2.1 Drawing a link . 51
6.2.2 Deleting a link . 52

6.3 Output speci�cation . 52
6.3.1 Drawing an output . 52
6.3.2 Editing an output . 54
6.3.3 Deleting an output . 57
6.3.4 Drawing an output edge 57
6.3.5 Deleting an output edge 57

6.4 Control panel de�nition . 58
6.4.1 Drawing an output view 58
6.4.2 Deleting an output view 58
6.4.3 Drawing a parameter editor 60
6.4.4 Deleting a parameter editor 60

7 Some examples 61
7.1 Introduction . 61
7.2 The rolling ball example . 61

7.2.1 De�ning the conceptual model 62
7.2.2 De�ning the dynamics . 62
7.2.3 De�ning the concrete model 65

7.3 The stupid model . 67
7.3.1 Stupid model 1 . 68
7.3.2 Stupid model 2 . 71
7.3.3 Stupid model 3 . 75
7.3.4 Stupid model 4 . 79
7.3.5 Stupid model 5 . 82
7.3.6 Stupid model 6 . 85
7.3.7 Stupid model 7 . 88
7.3.8 Stupid model 8 . 89

8 The scheduler 92

A Introduction to Scheme 96
A.1 Control syntax . 97
A.2 Booleans . 97
A.3 Numbers . 98
A.4 Dotted pairs and lists . 98
A.5 Mimosa primitives . 99

CONTENTS 3

B Introduction to Smalltalk 101
B.1 Mimosa primitives . 101

List of Figures

2.1 The welcome window . 10
2.2 The conceptual model editor as an example of an editor window 12
2.3 The category list editor of ontologies 13
2.4 The graphical editor buttons . 13
2.5 The scheduler window . 14
2.6 The project window with a selected conceptual model 16
2.7 The project window with a selected simulation model 17
2.8 The project window with a selected category 17

3.1 Farmer and plot individuals. 19
3.2 Farmers owning plots. 19
3.3 The description of the plot p2. 20
3.4 A category hierarchy of plots and people 20
3.5 A category hierarchy of plots and people with a relationship . . . 21

4.1 The buttons of the ontology editor. 23
4.2 An annotated category. 24
4.3 The creation dialog for a category. 24
4.4 The category graphical form. 25
4.5 The category editor with the attribute panel. 26
4.6 The category editor with the inherited attributes. 26
4.7 The creation dialog for a relation. 26
4.8 The example of a relation. 27
4.9 The relations of a category. 27

5.1 The behavior panel of the category. 30
5.2 The structure of an M-DEVS entity. 31
5.3 The behavior panel of a simple object. 47

6.1 The buttons of the model editor. 49
6.2 The creation dialog for an individual. 50
6.3 The individual graphical form. 50
6.4 The individual editor with the attribute and the initial ization

panels. 51
6.5 The creation dialog for a link. 51
6.6 The example of links. 52
6.7 A concrete model with an output speci�cation. 53
6.8 The creation dialog for an output. 53

4

LIST OF FIGURES 5

6.9 The output graphical form. 53
6.10 The output editor with an attribute panel. 54
6.11 The creation dialog for an output edge. 57
6.12 The control panel toolbar. 58
6.13 The control panel view. 59
6.14 The creation dialog for an output view. 59
6.15 The creation dialog for a parameter editor. 60

7.1 The conceptual model for a kicked and observed rolling ball. . . . 62
7.2 The conceptual model for a rolling ball with the attribut e panel. 63
7.3 The rolling ball category with the relations panel. 63
7.4 De�nition of an arc from an existing relation de�nition 63
7.5 The rolling ball category with the probes panel 64
7.6 The rolling ball category with the initialize panel 65
7.7 The rolling ball category with the external transition p anel . . . 66
7.8 The concrete model as an instance of the conceptual model. . . . 66
7.9 The edition dialog for an individual. 67
7.10 The view on the rolling ball state 67
7.11 The stupid conceptual model 1 69
7.12 The concrete model 1 . 71
7.13 The concrete model 1 control panel 72
7.14 The simulation model 1 control panel 72
7.15 The conceptual model 2 . 73
7.16 The concrete model 2 . 74
7.17 De�ning the visualization of the bug size 75
7.18 The simulation model 2 control panel 76
7.19 The stupid conceptual model 3 76
7.20 The concrete model 3 . 79
7.21 De�ning the visualization of the food availability 80
7.22 The simulation model 3 control panel 80
7.23 Choosing a probe observer for cells and bugs 82
7.24 The stupid conceptual model 5 83
7.25 The concrete model 5 . 84
7.26 The control panel 5 with the attribute editors 84
7.27 The control panel . 85
7.28 The concrete model 6 . 87
7.29 The parameters for a histogram visualizer 87
7.30 The control panel 6 speci�cation with the new histogram 88
7.31 The control panel with the histogram 89
7.32 The concrete model 8 . 90
7.33 The �le output parametrization 9 1
7.34 The result of the simulating the stupid model 8 91

8.1 The scheduler window. 92
8.2 The main inspector window. 93
8.3 The entity inspector window. 94
8.4 The graph of the simulated model. 95

Chapter 1

Introduction

Mimosa1 is an extensible modeling and simulation platform ([9]). It is aiming
at supporting the whole modeling and simulation process from the conceptual
model up to the running simulations.

The modeling process is assumed to be constituted iteratively of the following
stages:

The conceptual modeling stage: it consists in elaborating the ontology of
the domain as a set of categories, their attributes and theirrelationships,
either taxonomic or semantical. In short, this stage is about de�ning the
vocabulary used to describe concrete situations (the wordsto say it).

The dynamical modeling stage: in order to describe the dynamics of the
categories de�ned in the �rst phase, one must decide on the choice of
paradigm (di�erential equations, straight scripting, age nt-based, etc.) for
each category. The paradigm is described using a built-in meta-ontology.
Given the choice of dynamical paradigm, one must specify thepossible
states and state changes according to the chosen paradigm. Additionaly,
one can de�ne how to initialize the states and how to observe it.

the concrete modeling stage: the previously described stages de�ne the vo-
cabulary in which the concrete model(s) can be described as aset of indi-
viduals linked to each other and with given attribute values.

the simulation speci�cation stage: apart from the structure of the model
to simulate as described in the previous stage, an importantwork consists
in deciding which attributes can be considered as �xed parameters, which
ones can be manipulated by the user, how to output the observables of
the model (plots, grids, databases, statistical tools, etc.)

the simulation stage: it consists in running the simulations themselves by
creating the simulation model to run as a set of entities linked through
ports by connections, by associating the means to specify the input pa-
rameters and to handle the outputs of the simulations and by actually
simulating it.

1 It is the french acronym for �Méthodes Informatiques de MOdé lisation et Simulation
Agents�: computer science methods for agent-based modelin g and simulation

6

CHAPTER 1. INTRODUCTION 7

In the following, we shall describe these stages in turn withthe associated
concepts. But before, we shall shortly introduce how to run the system.

Mimosa is also implemented to be multi-lingual. For the time being only
english, french and spanish are provided. The user's manualis only in english.
Most of the explanations still apply even if the menus and titles are not the
same.

1.1 News

The changes from version 1.2.3 are the following:

1. various options for running Mimosa (see 2.2);

2. a new button in the scheduler window (see 2.5);

3. a new menu item for generating HTML documentation (see 4.1);

4. a new function to stop the simulation programmatically (see 5.3.1);

5. a number of probe observers are now described (but not all of them, see
6.3.2).

6. the stupid model example [13] is in the course of being described (see 7.3).

The changes from version 1.2.4 are the following:

1. the smalltalk scripting language is now working (see 5.3.2).

2. for space and time e�ciency, the in�uences and probes content has been
coded as arrays instead of vectors. The sections 5.2.3 and 5.3.1 have been
slightly changed accordingly.

3. the stupid model examples 4 to 8 [13] have been added (see 7.3). To be
read carefully to learn about using Mimosa.

4. the implementation packages have been extensively re-organized for a
clearer understanding of the code. This change does not concern this
user's manual but only the generated javadoc for the programmers.

The changes from version 1.2.5 are the following:

1. most importantly, the initialization process has been factored out from
the dynamics. It is now possible to specify how to initialize the simu-
lation model independetnly of the dynamics. For the time being it can
be speci�ed at the category level and at the individual level. A further
improvement concerns the possibility to also vary how to generate the
simulation model beforehand.

2. the possibility to group a number of models (conceptual, concrete and
simulation) into projects as well as browsing these projects in an easier
way.

3. the mereology browser, never completely implemented, has been removed
de�nitely.

CHAPTER 1. INTRODUCTION 8

4. the implementation packages have been again extensivelyre-organized for
a clearer understanding of the code. This change does not concern this
user's manual but only the generated javadoc for the programmers.

5. the so-called plugins are now distributed separatly.

6. installers for Windows, MacOSX and linux are now provided.

Chapter 2

Running Mimosa

2.1 Downloading Mimosa

Mimosa is a free software under LGPL license and CIRAD copyright. The
source and code is available on SourceForge.

If you are only interested in the program itself, you can go to the Mimosa
site on SourceForge:http://sourceforge.net/projects/mimosa . You just
have to follow the link �dowload� to go to the page where you can download the
software. How to run it is explained in the next section.

If you are interested by the software itself (or even want to contribute), feel
free to access it via the CVS server at:

pserver:anonymous@mimosa.cvs.sourceforge.net/cvsroo t/mimosa .
The latest version is available at the head of the project. The tagged versions

version1.0beta to version1.2.5b can be dowloaded but, of course, are not
fully up to date. If you want to be a developer, just create an account on
SourceForge and send a message to:

jean-pierre.muller@cirad.fr
to give the name of your account and to explain what you want todo.

2.2 Launching Mimosa

Mimosa is written in Java 1.5 and can be run on any platform (both hardware
and operating system) as long as at least Java JRE 1.5 is installed.

For the time being, Mimosa is provided as a folder containing:

� mimosa.jar which is the main program to be launched by typing: java
-jar mimosa.jar or by double-clicking on it if your OS has Java inte-
grated in it.

� a libs folder containing the libraries necessary for running Mimosa.

� an example folder containing some examples to load within Mimosa for
exploring its functionalities.

� a documentation folder for the documentation (it should be soon or later
a user's manual (this one), a programmer's manual and the full javadoc
hierarchy).

9

CHAPTER 2. RUNNING MIMOSA 10

Figure 2.1: The welcome window

� a plugins folder contains so-called plugins which are either hard-coded
examples or additional dynamical speci�cation paradigms. Nowadays all
the extensions of Mimosa are distributed in this form.

When launching Mimosa, a �rst window is opened to choose yourlanguage
(see �gure 2.1). The window shall appear in your operating system language as
well as the choice by default. However, depending with whom you are working,
any other available language can be selected. Thereafter, anumber of windows
appear (see 3). In the top the windows for editing the conceptual respectively
the concrete models. In the bottom left, the window to control the scheduler
and in the bottom right, an output window where a number of inf ormation are
displayed. The next section describes the menus in detail.

If the latter is the standard and most common use of Mimosa, a number of
options are now available for running it and available from the command line:

� java -jar mimosa.jar launches Mimosa as described before;

� java -jar mimosa.jar xxx.sml launches Mimosa with only the sched-
uler and output windows open and the given simulation model already
loaded. This option is used for delivering turn key models.

� java -jar mimosa.jar -nw xxx.sml launches Mimosa without the user
interface and can be used for running simulations in batch mode.

One can type java -jar mimosa.jar -h to know about further options.

2.3 The menus

Four menus are provided:

File: this menu provides access to all the functionalities related to the window
which is active or to open new windows:

New: is used to open any of the following new windows:

Project browser: opens a window for managing and editing the
projects as a set of conceptual, concrete and simulation models;

Conceptual model browser: opens a window for editing concep-
tual models;

Concrete model browser: opens a window for editing concrete
models (as instances of conceptual models);

CHAPTER 2. RUNNING MIMOSA 11

Scheduler: opens a scheduler control window for running the sim-
ulation models.

Open...: loads the content of a �le depending of the selected window or
item if in the project browser. The �le must contain an approp riate
XML representation. The kind of content which can be loaded de-
pends on the active window. If it is a conceptual model editor, only
a saved conceptual model can be loaded. If it is a concrete model
editor, only a saved concrete model can be loaded. In the lastcase,
be sure that the conceptual models used by the concrete modelhave
been loaded beforehand. Finally, if it is a scheduler window, only
the XML �les especially generated from the concrete model editor
for this purpose can be loaded1.

Save: saves the model currently edited in the active window in the asso-
ciated �le (the last �le it was saved to). If it was never saved before,
a �le chooser dialog opens.

Save as...: saves the model currently edited in the active window in a �le
to specify regardless of the last save (or open).

Save as image...: saves the displayed graph (if any) as a picture in a
number of proposed formats.

Print...: prints the content of the current window if applicable (it is ap-
plicable when a graph is displayed).

Refresh...: this item is only used if you de�ned a new meta-ontology in
a so-called plugin and you want to dynamically reload the plugins
de�nitions for further use without relaunching Mimosa.

Edit: this menu provides the contextual editing functionalities provided for
the selected window or object. This menu does not appear whenbrowsing
projects (yet). Any editor provides at least the following functionalities
in addition to the usual cut, copy and paste:

Export documentation...: to generate an html �le describing the con-
tent of the selected window or item in a human readable form;

Add...: to add a new object (categories, individuals, states, etc.);

Change...: to change the name of an object when there is an associated
name;

Edit..: to edit the structure of an object (the structure depends on the
object and, sometimes, includes the associated behavior description);

Remove: to remove the selected object(s);

Clear...: to remove all the de�ned objects.

Window: this menu provides quick access to the opened windows. One ofthese
is always accessible even if not shown by default:

Output: to display the output window which is a console containing: a
panel for user speci�c output, a panel where error are displayed and
a panel where the traces are displayed.

1This possibility is provided to create stand-alone models w ithout the associated conceptual
models.

CHAPTER 2. RUNNING MIMOSA 12

Figure 2.2: The conceptual model editor as an example of an editor window

Help: this menu gives access to a number of tools for debugging:

Statistics: displays in the output window some statistics about the data
structures used by the scheduler: number of created entities and
usage of the in�uences;

Prede�nitions: displays in the output window the prede�nitions as de-
�ned in the scripting mechanism;

Show content: displays in the output window the content of the tables
created by the various editors which are the data structuresbehind
the scenes;

Script interpreter: displays a window in which the user can enter ex-
pressions in any of the provided scripting languages in order to test
the code. The results are displayed in the output window whenpush-
ing the eval button.

2.4 The editor windows

Each editor window has the same structure (see the �gure 2.2). It is divided in
two vertical panels.

The left panel contains the list of existing models (either conceptual or con-
crete) referenced by their names, or the projects hierarchies. In Mimosa, these
models are also referred to as ontologies. One can select an existing concep-
tual model (in the conceptual model editor) or concrete model (in the concrete

CHAPTER 2. RUNNING MIMOSA 13

Figure 2.3: The category list editor of ontologies

Figure 2.4: The graphical editor buttons

model editor) or any of these (in the project browser) by left-clicking on its
name. By right-clicking on the panel, one accesses a popup menu where it is
possible to add a new model, open an existing one, change its name or delete
it. It is highly recommended to create a new model each time one is describing
a di�erent structure for modularity and reuse reasons.

The right panel is editor speci�c and usually allows multipl e views of the
same model or parts of it. In most cases a graphical view is provided. In the
�gure 2.2, there are three editor panels. The shown one is thegraphical editor
panel. The other two are used to edit categories and in�uencetypes (see 5.2.3)
as lists. The �gure 2.3 shows the list editor where it is also possible to add,
change the name, edit and remove categories.

On the top of any drawing view, there is a toolbar with a number of model
speci�c buttons. These buttons are speci�c and shall be described in the related
chapters. These editing buttons are also available as a popup menu when right-
clicking in the drawing area. The last button is a drop down menu to manipulate
the editor window (zooming in and out, reducing, enlarging or hidding/showing
the grid for objects alignment). The �gure 2.4 shows the buttons for editing
rather complex conceptual models (just for illustration).

Any created object can be edited by double-clicking on it. Onright-clicking

CHAPTER 2. RUNNING MIMOSA 14

Figure 2.5: The scheduler window

on an object, one can access a popup menu for editing (same as double-clicking)
or deleting the object.

2.5 The scheduler window

On the top of the scheduler window (see 2.5), the list of existing models is
provided for inclusion within the list of available models to the scheduler. It
is also possible to add additional models to simulate by loading them from
scheduler speci�c �les. This possibility is used when delivering turn key models.

The bottom of the scheduler window is divided in two vertical panels.
In the left panel, there is the list of existing models (as added from the model

editor or from �les). Exactly one model must be selected to berun.
The right panel is divided in three horizontal panels:

1. the top panel has two check boxes for debugging:

Trace: to turn tracing on and o�. If the trace is on, the in�uences pos ted
and sent are displayed in the trace window.

Verify: to turn verifying on and o�. If the verify is on, all the declar a-
tions (names, types and cardinality) are checked during simulation.
It slows down the simulation quite a bit but it is very useful f or
checking whether the behavior is consistent with the declarations.

as well as a button to visualize the simulated structure as a graph. Cur-
rently, the graph is not updated while running the simulatio n. Therefore,
the button has to be pushed each time, one wants to visualize the current
state (to be improved later on).

2. the middle panel displays the state of the simulation (unknown, initialized,
running or stopped) and the current date (in global time). An end date
can be entered to specify when to stop the simulation. The core simulation
system being event-based, this is NOT a number of steps but really an
end date.

3. the bottom panel has buttons for controlling the simulation:

Reset: for creating the simulation model and control panel out of its
description (either �le or concrete model).

Initialize: for putting the model in its initial state. The current date i s
always set to 0.

CHAPTER 2. RUNNING MIMOSA 15

Run: to run the simulation until the provided end date is reached. If the
end date is less or equal to the current date, nothing happens.

Step: to run one cycle of the simulation. All the in�uences scheduled at
the next date are executed.

Stop: to stop the simulation before the end date is reached. The current
cycle is always completed (and cannot be interrupted).

Close: to close the possibly opened outputs (�les or data bases) after the
simulation has been stopped.

Each scheduler window is associated to its own thread, so there is a pos-
sibility of having several scheduler window opened to run several simulations
simultaneously.

2.6 The project window

It is possible to group a set of related models (conceptual, concrete and simula-
tion models) into a single project. Each model is saved in a separate �le and the
project records the set of �les which are grouped together. The project window
maintains a list of loaded projects, each project being composed of conceptual,
concrete and simulation models.

The �gure 2.6 illustrates the structure of the project windo w. The left
vertical pane contains a hierarchy made of a list of projects, each one made of a
list of conceptual, concrete and simulation models respectively. Each conceptual
model contains a list of categories. Each concrete model contains a list of
individuals and outputs. By left-clicking on each of these items, one has access
to a corresponding editor if available in the right part of th e window. It is the
case for a conceptual model (see �gure 2.6) or for a single category (see �gure
2.8).

Left-clicking on a simulation model gives access to the panel for running the
simulation as well as its associated control panel (see 8). The resulting display
is illustrated in the �gure 2.7.

Right-clicking on an item in the left pane gives access to a conceptual menu
for creating, opening, saving and deleting whatever is appropriate depending on
the clicked item:

� on Projects it is possible to manipulate the projects list.

� on Conceptual modelsit is possible to manipulate the list of conceptual
models (creating or opening new models).

� on Concrete modelsit is possible to manipulate the list of concrete models
(creating or opening new models).

� on Simulation models it is possible to manipulate the list of simulation
models. Creating one gives access to the list of available concret models
in the project. Open one allows to load a stand-alone simulation model.

� on a speci�c conceptual model, it is possible to create new categories by
entering just their name.

CHAPTER 2. RUNNING MIMOSA 16

Figure 2.6: The project window with a selected conceptual model

2.7 The �les

Each model is stored in a separate �le in XML format with a given extension.
The available extensions are the following:

.pml: the �le contains a project as a list of related �les;

.aml: the �le contains a conceptual model made of categories, relations as well
as initialization and dynamics speci�cations;

.eml: the �le contains a concrete model made of individuals, linksa well as
initialization and output speci�cations;

.sml: the �le contains a complete simulation model containing alos the initial-
ization and output speci�cations to be run stand alone.

CHAPTER 2. RUNNING MIMOSA 17

Figure 2.7: The project window with a selected simulation model

Figure 2.8: The project window with a selected category

Chapter 3

The ontologies

In modeling and simulation, the structure is often understood as a composition
of models, each model computing a function to produce outputs (outgoing events
or values) from inputs (incoming events or values). Of course, this composition
re�ects the structure of the system one wants to model but no discourse on how
to describe a system structure is explicitly given. On the other hand, Arti�cial
Intelligence has focused part of its theories on how people describe the reality.
This part of Arti�cial Intelligence evolved, partly under t he pressure of the web
developments (both about its contents and its services), into what is called today
the description of ontologies.

The term ontology has its origin in philosophy, where it is the name of a
fundamental branch of metaphysics concerned with existence. According to
Tom Gruber at Stanford University, the meaning of ontology in the context of
computer science, however, is �a description of the concepts and relationships
that can exist for an agent or a community of agents.� He goes on to specify that
an ontology is generally written, �as a set of de�nitions of formal vocabulary�.

Contemporary ontologies share many structural similarities, regardless of
the language in which they are expressed. Most ontologies describe individuals,
links, categories, attributes, and relations. In this section each of these com-
ponents is discussed in turn as well as the related Mimosa speci�cation. More
descriptions can be found in [10, 12].

3.1 Individuals

Individuals are the basic, "ground level" components of an ontology. The in-
dividuals in an ontology may include concrete objects such as people, animals,
tables, automobiles, molecules, and planets, as well as abstract individuals such
as numbers and words. Strictly speaking, an ontology need not include any in-
dividuals, but one of the general purposes of an ontology is to provide a means
of classifying individuals into categories, even if those individuals are not explic-
itly part of the ontology. In Mimosa, the concrete model editor is provided for
de�ning the individuals, out of the de�ned categories. Only the individuals can
actually behave and therefore be simulated. In �gure 3.1, wehave three plots
(p1, p2 and p3) and two people (John and Paul). The name of the individual
is optional and indicated before the �:�. The name after the semi-colon shall be

18

CHAPTER 3. THE ONTOLOGIES 19

Figure 3.1: Farmer and plot individuals.

Figure 3.2: Farmers owning plots.

explained in the following. It actually is the name of the category the individual
belongs to.

3.2 Links

For the model to be properly called a structure, these individuals usually are
linked to each other in some meaningfull way. In our example,the �gure 3.2
shows some links between the individuals describing that John is proprietary of
p1 and p2, while Paul is proprietary of p3. The proprietary link is indicated by
the name ownership .

3.3 Attributes

Individuals in the ontology are described by specifying their attributes. Each
attribute has at least a name and a value, and is used to store information that
is speci�c to the individual it is attached to. For example th e p2 individual has
attributes such as:

surface 20

cover tree

The value of an attribute can be a complex data type; in this example, the value
of the attribute called cover could be a list of values, not just a single value.

CHAPTER 3. THE ONTOLOGIES 20

Figure 3.3: The description of the plot p2.

Figure 3.4: A category hierarchy of plots and people

In the �gure 3.3, some of the attributes are represented.

3.4 Categories

Categories are the speci�cation of the common features of groups, sets, or col-
lections of individuals. They are abstractions over sets ofconcrete individuals.
Some examples of categories are:

Person : the category of all people (describing what is common to allpeople);

Molecule : the category of all molecules (describing what is common toall
molecules);

Number : the category of all numbers;

Vehicle : the category of all vehicles;

Car : the category of all cars;

Individual : representing the category of all individuals.

Importantly, a category can subsume or be subsumed by other categories.
For example,Vehicle subsumesCar, since (necessarily) anything that is a mem-
ber of the latter category is a member of the former. The subsumption relation
is used to create a hierarchy or taxonomy of categories down to very speci�c
categories likeMaizeFarmer at the bottom. Figure 3.4 shows such a hierarchy
of categories.

Usually what is common to a collection of individuals is that they share
the same attributes. In the �gure 3.4, all the people have a name and an

CHAPTER 3. THE ONTOLOGIES 21

Figure 3.5: A category hierarchy of plots and people with a relationship

age. We also assume that each farmer has a cash�ow (but not a herder!). By
subsumption, any farmer and any herder has also a name and an age because
they are particular case of Person. In Mimosa an attribute has a name, a type
which can be only a single type (short, integer, long, �oat, double, string and
color) and a cardinality to have list of values. If an attribu te refers to another
category, it is a relationship and no longer an attribute. Therefore an attribute
is nothing but a relation to a simple notion (like numbers).

3.5 Relations

An important use of relations is to describe the relationships between individ-
uals in the ontology. In fact a relation can be considered as an attribute whose
value is another individual in the ontology, or conversely an attribute can be
considered as a relationship with another individual (a number is also an indi-
vidual, instance of the category of numbers). For example inthe ontology that
contains the Farmer and the Plot, the Farmer object might have the following
relation:

ownership Plot

This tells us that a Plot can be owned by a Farmer. Together, the set of
relations describes the semantics of the domain. In the �gure 3.5, a relation has
been added accordingly. In addition, we have also declared that a person can be
proprietary of any number of plots. One can see that the individuals described
in �gure 3.2 appear to be instances of the categories described in 3.5 and that
their links appear to be instances of the related relations.

In Mimosa, a relation is uni-directional and links a category to another, with
a cardinality.

The most important type of relation is the subsumption relat ion (is-superclass-
of, the converse of is-a, is-subtype-of or is-subclass-of)already mentioned in the
previous section.

Another common type of relations is the meronymy relation (written as part-
of) that represents how objects combine together to form composite objects. For
example, if we extended our example ontology to include objects like Steering
Wheel, we would say that "Steering Wheel is-part-of Ford Explorer" since a
steering wheel is one of the components of a Ford Explorer. Ifwe introduce
part-of relationships to our ontology, we �nd that this simp le and elegant tree

CHAPTER 3. THE ONTOLOGIES 22

structure quickly becomes complex and signi�cantly more di�cult to interpret
manually. It is not di�cult to understand why; an entity that is described as
'part of' another entity might also be 'part of' a third entit y. Consequently,
individuals may have more than one parent. The structure that emerges is
known as a Directed Acyclic Graph (DAG).

The part of the ontology consisting of the categories, attribute descriptions
and relations (either taxonomic or semantical) shall be called the conceptual
model. The part of the ontology consisting of the individuals, their attribute
values and their links shall be called theconcrete model. In the following the
editor to create the conceptual model shall be described. Inaddition, we shall
describe how to specify the dynamics associated to each category. Thereafter,
we shall introduce the concrete model editor.

Chapter 4

The conceptual model editor

4.1 The editor

The conceptual model editor is made of three panels for editing the conceptual
model:

� the graph panel for graphical editing.

� the list panel for editing the ontology as a list of de�nition s (a kind of
dictionary).

� the list panel of in�uence types to be explained in the section 5.

The list panel is the reference to know all the categories de�ned in the edited
conceptual model. In e�ect, a category may not appear in the graph panel.
Conversely, a category may appear several times in the graphpanel as well as
categories from other conceptual models. The rational behind this behavior
is that the drawing (hence the graph panel) must have an explanatory power
(not only a de�nitory one) and therefore any drawing clarify ing the explanation
should be possible. We shall concentrate on the graph panel which is neverthe-
less easier to use for de�ning the categories and the relationships.

The starting point is the tool bar in the upper part of the wind ow as illus-
trated in the �gure 4.1 where seven buttons appear:

� the �rst one is the grabber for selecting an object (categoryor relations)
in the drawing and is always selected by default;

� the second is the note object to write down documentary comments to
associate to categories;

� the third is the link to associate a comment with a category;

Figure 4.1: The buttons of the ontology editor.

23

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 24

Figure 4.2: An annotated category.

Figure 4.3: The creation dialog for a category.

� the fourth is for creating or selecting categories to draw;

� the �fth one is the taxonomic relationship;

� the sixth is the semantic relationship;

� �nally, the seventh is the button to access the push down menufor ma-
nipulating the grid behavior as already described in 2.4.

The �rst three buttons as well as the last one are always present for each graph
editor, so it shall not be explained again. The �gure 4.2 shows the use of a note.

The Edit menu contains an additional item called �Export documentation...�
for generating an HTML �le containing the exhaustive description of each de-
�ned category, including its associated documentation (see 4.2.2). This option is
very useful to generate a lexicon of all the notions introduced in the conceptual
model.

4.2 Category edition

4.2.1 Drawing a category

To draw a category in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the �gure 4.3.

This dialog is composed of two parts:

� the upper part lists all the categories available in all the opened ontologies.
Selecting one of these and typing either return or pushing the Existing
button shall draw the corresponding category at the selected place;

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 25

Figure 4.4: The category graphical form.

� the down part is used to create a new category with a name �eld to enter
a new name (which must be unique within the current ontology).

A rectangle with either one or two subparts shall be drawn at the selected
place 4.4:

� the upper part has two lines:

� the �rst line is the name of the category pre�xed by the name of the
ontology;

� the second line is the name of the way to de�ne the behavior forthis
category1. NativeState is chosen by default and does nothing.

� the down part is the list of attributes with their speci�cati on.

4.2.2 Editing a category

A category can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The category editor dialog (4.5) shows up with the following
parts:

� the name of the category, which cannot be changed;

� an �abstract� check box to specify whether the category can have instances
or not (e.g. most probably, in our example, there shall not bedirect
instances of Person, but only of Farmer and Herder);

� the super type, i.e. the category subsuming this category;

� a panel where one can specify either the documentation, the attributes,
the relations and the behavior (see chapter 5).

In �gure 4.5, one shows the attribute panel where the local attributes can be
added or deleted through a popup menu. Additionally, one cansee the list of
inherited attributes as shown in �gure 4.6, but this list can not be edited. Only
the locally de�ned attributes can be edited, the inherited l ist being computed.

4.2.3 Deleting a category

A category can be deleted by selecting it and selectingRemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the category must be removed from the ontology:

1For UML literates, it looks like a stereotype, and in fact it h as a related semantics with
respect to the MDA speci�cations.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 26

Figure 4.5: The category editor with the attribute panel.

Figure 4.6: The category editor with the inherited attribut es.

� if yes, the category is removed both from the drawing and the list of
categories de�ned in the ontology;

� otherwise, only the drawing is removed but the category remains as an
existing category.

4.3 Relation edition

4.3.1 Drawing a relation

To draw a relation in a given place it is enough to click on the corresponding
button and then from a category (called the source category)to another one
(called the target category), or to right click at the desired place to show up
the same toolbar as a popu menu. A new dialog is opened as illustrated in the
�gure 4.7.

Figure 4.7: The creation dialog for a relation.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 27

Figure 4.8: The example of a relation.

Figure 4.9: The relations of a category.

This dialog is also composed of two parts even if in the �gure 4.7 only one
shows up:

� the upper part lists all the existing relations available between the two
selected categories. Selecting one of these and typing either return or
pushing the Existing button shall draw the corresponding relation be-
tween the two categories.

� the down part is used to create a new relation with three �elds:

� a name �eld to enter a new name (which must be unique within the
source category);

� a cardinality �eld to specify whether the relation can reference one,
several or any number of objects of the given target category.

The arrow from the source category to the target category is annotated by
all the relevant information as shown in the �gure 4.8. Addit ionally, the �*�
means that each of these links can be drawn with any number of plots.

The list of de�ned relations for a category also appears in the relation panel
of the category editor as shown in the �gure 4.9. A relation can be added or
removed directly from this panel but the added relations shall be drawn only if
requested as an existing relations.

The subsumption or taxonomic relationships is a particularcase where noth-
ing need to be speci�ed but the source and target categories.

4.3.2 Editing a relation

A relation can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The same editor appears as for creating it.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 28

4.3.3 Deleting a relation

A relation can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the relation must be removed from the model:

� if yes, the relation is removed both from the drawing and the list of rela-
tions de�ned for the source category;

� otherwise, only the drawing is removed but the category remains un-
changed.

A relation can also be removed from the relation panel of the source category
editor. If it is deleted this way, all the drawings of the relation shall disappear
as well.

Chapter 5

The behavior

5.1 Introduction

For each category, one can associate a speci�cation of the behavior of the cor-
responding individuals. Basically, it is made by selectinga way to specify the
behavior (a state machine, a markov process, a di�erential equation, and the
list is extensible at will) and then by specifying the behavior according to the
selected way (the states and transitions for a state machine, the states and tran-
sition matrix for a markov process, etc.). The behavior itself is de�ned by the
speci�cation of the state, how the state evolves (the state dynamics) and how to
initialize it. The behavior is speci�ed by opening the category editor as shown
in �gure 5.1 and to select the behavior panel.

At the top, there is the speci�cation of the multiplier betwe en the global
time grain and the local time grain1. Further explanation on the representation
of time in Mimosa can be found in section 5.2.5. Just under it,there is drop-
down menu to choose the formalism to use, conditioning the possible states,
initializations and dynamics. This list is extensible through plugins.

The behavior panel is itself made of six subpanels:

� the probe panel is used to de�ne what can be observed from the individu-
als. It is used for displaying what happens during the simulation or saving
it to any media for further processing (statistics, etc.). The probes shall
be described in the section 5.2.4.

� the incoming in�uences panel is used to specify the events the individuals
are able to react to. They shall be explained in the sections 5.2.1 and
5.2.3.

� the outgoing in�uences panel is used to specify the events the individuals
are producing. They shall also be explained in the sections 5.2.1 and 5.2.3.

� the state panel is used to specify the state structure which can be a vari-
able, a set of possible states, a set of attributes, a knowledge base or
anything depending on how one want to describe the behavior of the in-
dividuals of this category.

1The grain is the smallest di�erence between any two time meas ure which can be distin-
guished.

29

CHAPTER 5. THE BEHAVIOR 30

Figure 5.1: The behavior panel of the category.

� the initialize panel describes how to initialize the state of the individuals,
each time the simulation is setup. The initial state can be retrieved from
a data base or set the same for all the individuals.

� the dynamics panel is used to specify the state evolves over time. Once
again, it can be a di�erential equation, a state machine or whatever
suits the chosen state structure. In the �gure 5.1, the chosen way to
specify the behavior is through a state chart as speci�ed in UML called
StateChartState . Therefore a corresponding state chart editor is shown.

To understand the o�ered possibilities and, more importantly, the behav-
ior one can expect from these various formalisms, i.e. state, initialization and
dynamics speci�cations, it is necessary to go down to the ground and expose
a little bit of the underlying machinery. This is done in the f ollowing section.
Thereafter, we shall introduce some already existing formalisms and their cor-
responding speci�cations.

5.2 The operational semantics

Globally, the underlying machinery is nothing but a discrete event simulation
system. The running model is made of entities sending time stamped events
which are delivered to their target entities at the speci�ed dates, possibly gener-
ating new time stamped events and so on. The scheduler is in charge of ordering
the events by their time stamps and to execute them in order. The only thing to
specify is how each entity behaves, i.e. generates new time stamped events and
reacts to incoming events. It is the purpose of the next section. In the following

CHAPTER 5. THE BEHAVIOR 31

Figure 5.2: The structure of an M-DEVS entity.

the events are called in�uences for obscure (another name for historical) reasons
[8].

5.2.1 The model

The underlying simulation semantics is based on an extension of //-DEVS (see
[14]) called M-DEVS as a shorthand for Mimosa-DEVS. Therefore, one must
understand how M-DEVS works in order to master the behavior of the models
although most details are assumed to be hidden by higher level of abstractions
as suggested in the introduction of this chapter.

A M-DEVS entity is a tuple:

< X; Y; P; S; O; init; � ext ; � int ; � log ; � con ; � ext ; � int ; � log ; � str ; � probe >

where:

X : is a set of incoming in�uences which are de�ned in the incoming infuences
panel;

Y : is a set of outgoing in�uences which are de�ned in the outgoing infuences
panel;

P: is a set of probes which are de�ned in the probe panel;

S: is a set of possible states as de�ned in the state panel;

O: is a set of output ports the elements of Y are sent to;

At this stage, we have the structure of an entity, regardlessof its possible dy-
namics. This entity is represented in the �gure 5.2 where theports are repre-
sented by black triangles, and the arrows shows the incomingin�uences from
the left, the outgoing in�uences through the ports on the right and the probes
(or observations onS) from the top.

The function init is called for initializing the entity when created (either at
the beginning of a simulation or when created). The dynamicsis described by
the following functions:

� ext : is a function to specify the reaction to a set of incoming in�uences (all the
in�uences occurring at the same time are given simultaneously);

CHAPTER 5. THE BEHAVIOR 32

� int : is a function to specify the internal change (when and what todo is spec-
i�ed by � int);

� con : is a function to specify the reaction to the simultaneous occurrence of an
internal change and the arrival of a set of incoming in�uences;

� log : is a function to specify the reaction to a set of logical in�uences, possibly
producing further logical in�uences;

� ext : is a function to provide the outgoing in�uences (when it is called is also
speci�ed by � int);

� int : is a function to provide the what to do (an internal in�uence) and when
(called � the duration to wait before doing the internal change);

� log : is a function to provide the logical in�uences to occur after each transition;

� str : is a function to provide the structural changes to occur alsoafter each
transition;

� probe : is a function to provide the observables of the state changesafter each
cycle;

For all functions but init , the duration since the last cycle (see below) is given
as an argument. Therefore the internal logic of any atomic model is based on
durations.

Although complicated at the �rst sight, the logics is very si mple:

� � ext and � ext are the functions to issue the events (� ext) and to handle
them (� ext). It corresponds straight away to the intuitive event based
mechanism as explained in the introduction. The events are produced
when � elapsed since the last transition;

� � int and � int are the functions for specifying the spontaneous behavior,
i.e. what the �box� does (� int), when (�) and how (� int);

� � log and � log are used to propagate information (� log) and make compu-
tations based on this information (� log);

� � str speci�es the possible modi�cations in the interconnection topology
(see below).

� � probe speci�es the observations to provide at each cycle.

Mimosa implements a unique so-called M-DEVS bus which is a set of M-
DEVS entities with interconnected ports. More precisely, a M-DEVS bus is a
pair < E; links > where:

E : is a set of M-DEVS entities;

links : is a mapping from E � O into E specifying a mutable interconnection
topology;

For simulation, the M-DEVS bus runs in cycles. Each cycle corresponds to
a certain date where everything happening at that date is propagated through
all the M-DEVS entities. At each cycle:

CHAPTER 5. THE BEHAVIOR 33

1. each model is asked for its� . Let min � be the smallest value;

2. the global time is advanced bymin � . Let:

� C be the set of models with the samemin � ;

� C0 2 C be the set of models producing outputs;

3. � ext is called for each model inC0 and the outgoing in�uences are gathered
and their destinations are identi�ed using links ;

4. for each modelm in C:

� if m has simultaneous incoming in�uences and an internal change,
� con is called;

� if m has only an internal change,� int is called;

� if m has only incoming in�uences, � ext is called;

and all the outgoing logical in�uences are gathered;

5. all the logical and structural in�uences are dispatched via links by calling
� log , � str and � log until there is no logical in�uences left (be careful about
possible loops which are not detected).

6. all the observations of the state changes are issued caling � probe .

For each individual, MIMOSA shall generate a correspondingentity which
shall be initialized from the list of its attribute values in a state speci�c way as
speci�ed by init . A more formal and detailed account can be found in [11].

5.2.2 The ports

A port provides a way to connect M-DEVS entities together. A port can connect
an entity to any number of other entities. In Mimosa we distinguish between
a port and a port name. A port name can be a simple name (aString),
designating all the entities linked through the given port, or a name with an
index (with the syntax <name>['('<int>')']), designating one of the entities
linked through this port. In the case the cardinality of the p ort is one (only one
entity can be linked through this port). The two possible port names<name>or
<name>'(0)' are equivalent. Therefore the index is optional if the cardinality
is 1.

If the reader perceives some relationship between a port anda link, he is
right. We are here using the vocabulary used in the modeling and simulation
community which is unrelated to the vocabulary used in the ontology com-
munity. As for individuals generating M-DEVS entities, the links are used to
produce the initial interconnection topology as ports.

5.2.3 The in�uences

An in�uence is an event which is transmitted between two M-DEVS entities. In
Mimosa we also distinguish between in�uence types and in�uences as instances
of in�uence types.

CHAPTER 5. THE BEHAVIOR 34

The in�uence types are just names but must be declared. Thesenames
are unique in a given conceptual model (or ontology). This type level is not
really useful at this stage but provides a provision for further typing (like the
declaration of the arguments) to be used for connectivity with other buses like
HLA or CORBA where the type of transmitted information has to be declared.

The in�uences are instances of in�uence types. For the time being they have:

� a name which is the name of the corresponding in�uence type;

� a content which is either empty or an array of elements.

For ensuring communication between entities possibly written in various lan-
guages, and in particular, in various scripting languages,a standard and limited
format is imposed for the content. A content is necessarily an array (at the
implementation level an instance of Java array) of:

� arrays, allowing recursive structures;

� simple types: shorts, integers, longs, �oats, doubles, booleans and strings
(respectively implemented internally in Java as instancesof Short, Integer,
Long, Float, Double, Boolean and String).

In principle, no other kind of data can be send through the in�uences if one
want to ensure consistency between entites writtent in di�erent programming
languages.

5.2.4 The probes

It is possible to associate to any individual (therefore to any M-DEVS entity), a
visualization window for displaying any information evolving over time (e.g. the
entity state changes). Having no hypothesis on the nature ofthe entity states,
there is NO automatic synchronization between the model andits visualization.
To perform this visualization, one has to declare a list of probes given by their
name, type (only simple types are allowed) and cardinality (in reality, it is
just another type of in�uence). When specifying the behavior, i.e. the various
transition functions, the user has to explicitly send probe values whenever he
wants to signal a change. The probe value is propagated to thevisualization
window which can perform whatever one wants: drawing or saving the data for
further processing.

5.2.5 The time

The underlying time for the whole system is considered discrete (regardless of
the grain which could be as �ne as picoseconds) and thereforemapped on natural
numbers. As already mentioned, an M-DEVS entity only considers durations.
In addition, these durations can only be expressed as integers.

When simulating an M-DEVS entity, a local time is deployed. The creation
of an M-DEVS atomic model either at the start of the simulation or during
it, de�nes the origin of the local time (0). All the durations are added up,
generating a local date as an integer. In particular, this local time is used to
compute the durations transmitted to the M-DEVS entity.

A step further, the M-DEVS bus de�nes a global time. The origin of the
global time (0) is the start of the simulation (initializati on always occurs at the

CHAPTER 5. THE BEHAVIOR 35

global time 0). The M-DEVS entity local times are mapped to the global time
in two ways:

� the origin of the local time is situated in the global time at t he (global)
time of creation of the M-DEVS entity;

� the ratio between the local time grain and the global time grain is given.
The global time grain is assumed to be the smallest possible grain able
to take into account the grain of any other atomic model as an integral
multiplier of the global grain.

Still at this stage, the time is a natural number without dime nsion (without
unit). The correspondence between this time and the real time where the origin
of simulation corresponds to a real date and the global grainhas a unit (pi-
cosecond, hour or week) shall be speci�ed externally. It is foreseen to be able to
declare this information to the scheduler and use this reference to de�ne in an
easier way the time units of the entities. It is not yet completely implemented
at this stage.

In summary, any M-DEVS entity has

� a grain (the smallest undistinguishable time di�erence) de�ned implicitly
by having durations expressed with integers and explicitlyby a multiplier
with the global grain;

� an origin de�ned implicitly by having the entity life starti ng at 0 and
explicitly by a position of this origin with respect to the gl obal time.

Although each M-DEVS entity has to de�ne the above describedfunctions
for specifying its dynamics and therefore to behave properly, the user do not
necessarily need to know about the existence of these functions. For example,
the user could only provide a di�erential equation, an integration method and
an integration step and a proper de�nition of the � and � functions shall take
care of integrating the equation correctly. This is done by specifying once and
for all a particular plugin called a formalism. The already provided formalisms
are described in the following section.

5.3 The behavior speci�cation

In order to de�ne a formalism for specifying the behavior of an entity, the
programmer must expect to have to specify each of the mentioned function for
proper functioning of the model, hence the importance to understand the under-
lying operational semantics as described before. However,as mentioned earlier
higher level speci�cations can be made as various kind of state machines, petri
nets, directly speci�ed di�erential equations with variou s means of integration
as long as there execution can be mapped in the previously described functions.
These extensions can be added at will to the system in a way which is described
in the programmer's manual.

When editing a category behavior, a number of panes are dedicated for
specifying the behavior (see the �gure 5.1):

� the probes to declare which information is dynamically provided during
entity simulation;

CHAPTER 5. THE BEHAVIOR 36

� the incoming in�uences to declare the list of incoming in�uences;

� the outgoing in�uences to declare the list of outgoing in�uences;

� the state pane for specifying the state structure;

� the initialization pane for specifying the initialization method;

� the dynamics pane to describe the behavior itself.

The chosen formalism as well as the time grain is speci�ed above these panels.
Actually, the available means for specifying the behavior are as follows:

� by writing a piece of Java program and declare it to the Mimosasystem
to make it available in the user interface: the so-called hard coded or
programmatic way;

� by specifying the behavior of each of the mentioned functionusing a script-
ing language. Several scripting languages are available: java, scheme, jess
(unavailable due to a need for a license), python, smalltalkand prolog
(not fully tested yet);

� with a state/transition diagram where the conditions and actions can be
speci�ed in one of the scripting languages mentioned before;

� with any higher level mean of speci�cation as markov processes, etc. de-
pending on the availability of the corresponding plug-in.

These various technics shall be described in turn in the nextsections.

5.3.1 Programmatic speci�cation

This section is more appropriate for the programmer's manual but is included
here to introduce the basics which are made available in the other ways of
specifying the model behavior. With your favorite Java IDE (for example Eclipse
(http://www.eclipse.org)), create a new project with a pac kage (let's call it
example) in which you have to create a number of classes:

� a subclass ofmimosa.state.DefaultState describing your behaviour state.
In case of a parameterizable formalism, the resulting classshall be con-
sidered as the name of your formalism.

� for each particular way you want to provide for initializing your state,
de�ne a subclass ofmimosa.init.AbstractStateInitializer .

� for each particular way you want to provide the dynamics of your state
(how the state changes), de�ne a subclass ofmimosa.dynamics.AbstractDynamics
or mimosa.dynamics.DefaultDynamics .

For example, for de�ning a new behavior calledMyState, the result is a �le
with the following content:

CHAPTER 5. THE BEHAVIOR 37

package example;

import mimosa.state.DefaultState;

public class MyState extends DefaultState {

public void setParameter(String name, Object value)
throws EntityException {
....
}

public void doInstanceInitialize(StateSpecification st ateSpecification)
throws EntityException {
....
}

}

The two provided methods are called when an entity is created: setParameter
for possibly storing the parameter values if necessary anddoInstanceInitialize
for building the structure of the state. The latter method is parameterized by
an externally setup speci�cation which is entirely dependent on the way the
state is de�ned. We shall not describe further this later possibility but see the
programmer's manual for more details.

For de�ning how to initialize the state each time the simulat ion is run, the
resulting �le could be like this one:

package example;

import mimosa.init.AbstractStateInitializer;
import mimosa.scheduler.EntityException;
import mimosa.state.State;

public class MyStateInit extends AbstractStateInitializ er {

public void initialize(State state) throws EntityExcepti on {
....
}

}

The method initialize is called each time the simulation is run. The state is
given as a parameter because the role of this class is to initialize the state. If the
way to intialize the state is parameterized externally, thevariable initializerSpecification
contains the related speci�cation. Once again this structure is completely pro-
grammer dependent and shall not be explained further here.

Finally de�ning the dynamics would result in the following c lass:

package example;

import mimosa.dynamics.AbstractDynamics;

CHAPTER 5. THE BEHAVIOR 38

import mimosa.scheduler.EntityException;
import mimosa.state.State;

public class MyStateDynamics extends AbstractDynamics {

public void doConfluentTransition(State self) throws Ent ityException {
....
}

public void doExternalTransition(State self) throws Enti tyException {
....
}

public void doGetExternal(State self) throws EntityExcep tion {
....
}

public void doGetInternal(State self) throws EntityExcep tion {
....
}

public void doGetLogical(State self) throws EntityExcept ion {
....
}

public void doGetStructural(State self) throws EntityExc eption {
....
}

public void doInternalTransition(State self) throws Enti tyException {
....
}

public void doLogicalTransition(State self) throws Entit yException {
....
}
}

AbstractDynamics de�nes eight (8) methods:

� public void doExternalTransition(State self) throws Enti tyException; :
equivalent to � ext .

� public void doInternalTransition(State self) throws Enti tyException; :
equivalent to � int .

� public void doLogicalTransition(State self) throws Entit yException; :
equivalent to � log .

� public void doConfluentTransition(State self) throws Ent ityException; :
equivalent to � con .

CHAPTER 5. THE BEHAVIOR 39

� public void doGetExternal(State self) throws EntityExcep tion; :
equivalent to � ext .

� public void doGetInternal(State self) throws EntityExcep tion; :
equivalent to � int together.

� public void doGetLogical(State self) throws EntityExcept ion; : equiv-
alent to � log .

� public void doGetStructural(State self) throws EntityExc eption; :
equivalent to � str .

If something is going wrong, just throw an EntityException with the entity
and a message as parameters. The exception will be taken intoaccount by the
architecture in an appropriate way. Do not forget to catch any possible exception
and raise an EntityException accordingly for securing the model execution.
Because they are prede�ned for doing nothing, you can only de�ne the methods
you actually need. By using DefaultDynamics instead of AbstractDynamics ,
all the methods are programmed for doing nothing, so it is only necessary to
de�ne the one you really need (not all the methods needs to do something).

When calling each method, this variable is de�ned and appropriately bound
in the context:

time: contains the duration since the previous transition (remember that these
methods are called in a given cycle and the M-DEVS bus advances time
from a cycle to another);

The following methods are de�ned for accessing the incomingin�uences:

� getAllInfluences() : to get the list of incoming in�uences in any order;

� getInfluence(String name) : to get the list of incoming in�uences with
the given name. It is used to control the order in which to handle the
incoming in�uences;

� getInternalInfluence() : to get the incoming internal in�uence.

To program each functionality, a number of methods are de�ned by cate-
gories:

� to manipulate random generators2:

� public Random newRandom();

� public Random newRandom(long seed);

� public boolean newBoolean(Random rand);

� public int newInt(Random rand,int max);

� public double newDouble(Random rand);

� to easily create ports and port references:

� public Port port(String name,int index);

2 it is necessary to hide which kind of generator is used. Curre ntly the Mersenne Twister
random generator is known as one of the best and provided in Mi mosa.

CHAPTER 5. THE BEHAVIOR 40

� public Port portRef(Port port...);

� to manipulate the in�uence content:

� Object[] contentOf(Influence influence) : which returns either
null if there is no content or an array of objects (as de�ned in 5.2.3).

� Object[] list(Object... objects) : to create an array of ob-
jects as a content or sub-content.

� Object[] array(Object... objects) : to create an array of ob-
jects as a content or sub-content.

� Object object(T i) : where T is one of the Java simple types (short,
int, etc.) to encapsulate them within the corresponding class instance
(Short, Integer, etc.).

� T toT(Object o) : where T is one of the Java simple types (short,
int, etc.) to unbox them from the corresponding class instance (Short,
Integer, etc.).

� to get the initial value of a parameter:

� public Object getParameter(String name) .

� to post an in�uence at a given port:

� void sendExternal(String portName, String influenceType Name),

� void sendExternal(Port portName, String influenceTypeNa me),

� void sendExternal(String portName, String influenceType Name,
Object... args) ,

� void sendExternal(Port portName, String influenceTypeNa me,
Object... args) .

� void sendLogical(String portName, String influenceTypeN ame),

� void sendLogical(Port portName, String influenceTypeNam e) ,

� void sendLogical(String portName, String influenceTypeN ame,
Object... args) ,

� void sendLogical(Port portName, String influenceTypeNam e,
Object... args) .

� void sendInternal(int duration, String influenceTypeNam e) ,

� void sendInternal(int duration, String influenceTypeNam e,
Object... args) ,

� void reply(LogicalInfluence influence, String influence TypeName),

� void reply(LogicalInfluence influence, String influence TypeName,
Object... args) ,

These methods can be called in most methods.

� to signal a state change by a probe:

� public void sendProbe(String name,Object... args) .

� to destroy itself:

CHAPTER 5. THE BEHAVIOR 41

� public void die() .

It removes the entity from the scheduler, removes of the linkreferences as
well as all the scheduled incoming in�uences.

� and �nally to stop the entire simulation:

� public void stop() .

It is used to be able to stop the simulation whenever some conditions
occur.

In addition, a number of methods are de�ned to dynamically create and link
entities during the simulation:

� void addPort(PortReference name, String categoryName, Ma p<String,Object>
parameters) : creates an entity as an instance of the given category,
whether it is traced or not and the map of attribute values;

� void addPort(String name, String categoryName, Map<Strin g,Object>
parameters) : same as above when there is a simple syntax for the port
reference;

� void linkPort(PortReference portRef1, PortReference por tRef2) :
links the port reference to the entities referenced by the second port ref-
erence, creating new links;

� void linkPort(String portRef1, PortReference portRef2) : same as
above;

� void linkPort(PortReference portRef1, String portRef2) : same as
above;

� void linkPort(String portRef1, String portRef2) : same as above;

� void removePort(PortReference portRef) : removes the entities from
the given port, without destroying the referenced entities (they kill them-
selves usingdie).

� void removePort(PortReference portRef) : same as above.

To simplify the speci�cation of the parameters in addPort , two additional meth-
ods are provided:

� public Pair pair(String name,Object args...) : for creating a pair
(parameter name, value);

� public Map<String,Object> parameters(Pair args...) : for creating
the adequate map from the pairs.

For example, if we want to program the behavior of a clock which sends a
in�uence named tick to its clocked port at interval time, we could have the
state de�ned this way:

CHAPTER 5. THE BEHAVIOR 42

package example;

import mimosa.state.DefaultState;

public class MyClock extends DefaultState {

private int interval;

public int getInterval() { return interval; }

public void setParameter(String name, Object value)
throws EntityException {
if (name.equals("interval")) interval = ((Integer)value).intValue();
}

public void doInstanceInitialize(StateSpecification st ateSpecification)
throws EntityException {
}

}

The state is composed of a single variable recording the interval between two
tick s from the attribute values. And the dynamics is as follows:

package example;

import mimosa.dynamics.AbstractDynamics;
import mimosa.scheduler.EntityException;
import mimosa.state.State;

public class MyClockDynamics extends DefaultDynamics {

public void doGetExternal(State self) throws EntityExcep tion {
self.sendExternal("clocked","tick");

}

public void doGetInternal(State state) throws EntityExce ption {
self.sendInternal(((Clock) self).getInterval(),"tick ");

}
}

in which we declare a variable to use the interval between twoticks stored in the
state, the � function which signals an output after the given interval and � ext

where a single in�uence is sent to the port. Notice the use ofDefaultDynamics
for not de�ning all the methods when only two are necessary.

Of course, it is not enough to write the code. This code has to be known by
Mimosa. In order to do that, you have to create an XML �le in whi ch Mimosa
can read the following declarations:

<?xml version="1.0"?>
<mimosamodule name="Example" package="example">

CHAPTER 5. THE BEHAVIOR 43

<behaviour notion="EntityType" implementation="MyCloc k">
<parameters>

<parameter name="interval" cardinality="1" type="java. lang.Integer"/>
</parameters>
<outInfluences>

<influenceType name="tick"/>
</outInfluences>

</behaviour>
<dynamics state="MyClock" dynamics="MyClockDynamics"/ >

</mimosamodule>

This XML �le contains everything you would have declared thr ough the user
interface and additionnaly de�nes through the package and implementation
attributes where to �nd the corresponding class for the state. The dynamics
tag declares that MyClockDynamicsis one way (in this case the only way) to
de�ne the dynamics of MyClock.

You then have to create a folder calledexample, to put the .jar containing
the compiled class, to de�ne a �le called example-config.xml containing the
content above and to put the whole folder in the plugins subdirectory of Mimosa.
By trying this example, the behavior MyClockwill appear in the list of available
formalisms.

In general, any new behavior (or way of de�ning behaviors) can be added
to Mimosa by putting in the plugins directory a folder called xxx with a �le
called xxx-config.xml in it with the related XML content and as many .jar
as necessary. Further details as well as the complete syntaxof the XML �le
shall hopefully be presented in the programmer's manual.

5.3.2 Scripted speci�cation

The previous procedure being relatively heavy but necessary if one wants either
an e�cient piece of code or to use Java to encapsulate a legacysimulation
software, we provide the same functionality by using scripting languages directly
through the user interface. The basic principles are the same and we are using
the same names for the variables and functions or equivalentfor consistency. For
using this functionality, you have to select Scripting in the drop down menu of
the behavior pane. In the state panel, you will have another drop down menu
to select the desired scripting language as well as an editorfor specifying the
structure of the state.

In a model, any combination of scripting languages can be used because
all the speci�c data structures are translated into a standard Java format and
back to the speci�c data structures. So feel free to use any one you �nd most
appropriate for your usage. Of course, it requires to be multi-lingual!

Java scripting

Java scripting makes available the full Java language by using the bean shell
library (see [5] for getting the related documentation). In particular, all the
methods de�ned in the section 5.3.1 are readily available. However to call them,
a new variable is de�ned: self . The methods can be called by addressing them
to self . For example, for the � ext function, the code is:

CHAPTER 5. THE BEHAVIOR 44

self.sendExternal("clocked","tick");

There is one drawback in using Java scripting: all the Java types have to
be pre�xed explicitly by the package name (for example java.lang.Integer
instead of simply Integer). Conversely, one can use undeclared variables pro-
viding �exibility.

Scheme scripting

The Scheme language is a kind of pure functional language (based on lambda-
calculus). The facilities for manipulating symbols and lists make it particularly
useful for qualitative and symbolic manipulations, much less for numerical com-
putations. We are using the Kawa library ([6]: fast and complete but with
scoping problems) as well as JScheme ([3]: limited and slow but semantically
consistent) for providing Scheme. The documentation for the language itself
can be found on the corresponding web site. The appendix A provides a short
reference to the Scheme language as well as the list of provided functions for
calling Mimosa.

Jess scripting

Jess is a rule base language with a forward chaining semantics (see [2]). The
behavior is described as a single set of rules of the form<conditions> =>
<actions> . Whenever the conditions are met, the corresponding rule is�red
and the actions executed. In our case, each M-DEVS function introduces the
time, the in�uences and the function name in the fact based and the rules are
�red accordingly until no rule is applicable. The example of the clock looks like
this:

(defrule initialize1
(initialize)
=>
(make (interval (getParameter "interval"))))

(defrule getExternal
(getExternal)
=>
(sendExternal "clocked" "tick"))

(defrule getInternal
(getInternal)
(interval $value)
=>
(sendInternal $value "tick"))

It is no longer maintained because Jess requires a licence which is free for
academics but costly for others. The library is not providedwith the distribution
for that reason but can be downloaded from [2].

Python scripting

The implementation uses the Jython library whose documentation can be found
on [7]. We are using the possibility in this version of Pythonto call Java objects
with the standard Python syntax. Accordingly, the variable self is de�ned as

CHAPTER 5. THE BEHAVIOR 45

well as all the variables as in Java and the corresponding methods can be called
directly. So, there is not much di�erence with Java. However, for facility, we
have de�ned the corresponding functions which can be calleddirectly without
using the reference toself .

Prolog scripting

Prolog ia a rule base language with a backward chaining semantics. The behav-
ior is described as a single set of rules of the form<conclusion> :- <conditions> .
The program is run by asking for a conclusion and the program tries to �nd
the possible proofs. As in Jess, each M-DEVS function introduces the time,
the in�uences and the function name in the fact based and the rules are �red
accordingly until no rule is applicable. The run predicate must be de�ned. The
example of the clock looks like this:

run :- initialize,
X is getParameter(interval),
asserta(interval(X)).

run :- getExternal,
sendExternal(clocked,tick).

run :- getInternal,
interval(X),
sendInternal(X,tick).

Implemented but not yet fully tested. The implementation uses the tuProlog
library whose documentation can be found on [4].

Smalltalk scripting

The implementation uses Athena (see the we site [1]) which isa lightweight im-
plementation of Smalltalk for embedded applications and has been fully tested.
A class calledSelf has been implemented with a number of class methods to
access Mimosa from Smalltalk. The list of implemented methods can be found
in the appendix B.

5.3.3 State charts

Coming soon.

5.3.4 Further extensions

This level being extensible at will by adding further meta-ontologies, this chapter
shall only describe some of them as provided in the �rst versions of Mimosa.
How to de�ne new meta-ontologies is described in the programmer's manual. In
this chapter, we shall introduce the meta-ontologies for object, space, cellular
automata and multi-agent systems.

The objects

Most categories have very simple behavior corresponding roughly to what is
available in objet-oriented programming. For the categories, it is not necessary
to provide the full M-DEVS functionality (although object- orientedness can be

CHAPTER 5. THE BEHAVIOR 46

mapped in a subpart of M-DEVS). We have provided two versionscorresponding
to most needs:

� StaticObject is used when the only functionality is around state variable
values being set and get;

� SimpleObject is an extension ofStaticObject where external and logical
in�uences are considered as method calls: the external in�uences when
the SimpleObject will change state in response, and the logical in�uences
when only information updates and requests have to be handled.

StaticObject contains a set of state variables to choose among the at-
tributes 3. The following incoming in�uences are expected:

� setState name value : as an external in�uence to change the value of
one of the variables;

� getState name: as a logical in�uence to ask for the value of one of the
variables.

The following outgoing in�uences are issued in response to the getState in�u-
ence:

� state name value : as a logical in�uence to communicate the value of the
requested state variable;

� undefinedState name : as a logical in�uence to communicate the state
variable has no value.

SimpleObject has the same semantics asStaticObject and as such pro-
vides to the same incoming and outgoing in�uences. In addition to de�ning the
state variables, the modeler can add as many additional incoming and outgoing
in�uences as he wants. SimpleObject allows to associate a piece of code to
execute to each incoming in�uence. In �gure 5.3, the upper part shows on the
left the list of de�ned attributes and on the right the list of attributes which
have been chosen as state variables. In the bottom part, one can see the chosen
scripting language, the chosen incoming in�uence and the associated code. The
arguments of the in�uence if any are stored in the variablearguments as a list.

The spaces

Coming soon.

The cellular automata

Coming soon.

The multi-agent systems

Coming soon.

3 It is assumed that a state variables always has an initial val ue to be set from the corre-
sponding attribute.

CHAPTER 5. THE BEHAVIOR 47

Figure 5.3: The behavior panel of a simple object.

Chapter 6

The concrete model editor

At this stage, the conceptual model has been completely de�ned both with
its structural part (the ontology properly speaking) with t he categories, their
attributes and their relations, and its dynamical part by sp ecifying in a way
or another the dynamics of the individuals speci�ed by each category. The
concrete model editor shall use these de�nitions for providing the user with
the possibility to describe as many concrete models as he wants as a set of
individuals, attribute values and links. These individuals, attribute values and
links are nothing but the instances of the corresponding categories, attribute
descriptions and relations. Their edition shall be described in the sections 6.1
and 6.2.

In addition, the user must specify what to do with the probes (see 5.2.4). As a
reminder, the probes are speci�ed in the dynamical description of the categories
and must be sent to signal a state change of interest, usingsendProbe. The
concrete model editor provides the mean to specify the outputs where one wants
to send these probes. These outputs can be visual as graphs, plots, grids, etc.
or can be �les, databases or even channels to various tools running in parallel
like R, Excel, etc.. This part shall be described in the section 6.3.

Finally, the user can visually specify a control panel to be used during the
simulation which includes:

� the visual outputs;

� the widgets to parameterize the model.

This latter part shall be described in section 6.4.
The concrete model editor is made of two panels:

� on the left pane, there is a list of existing models. These models can be
created or removed by double-clicking in this pane.

� on the right pane, there are two graph panels:

� the �rst one is a graph panel very similar to the one used for creating
conceptual models. The top of the panel is occupied by a drop down
menu to select the conceptual model from which one wants to instan-
tiate the individuals and links. A concrete model can be drawn from
several conceptual models combining various sources of knowledge.

48

CHAPTER 6. THE CONCRETE MODEL EDITOR 49

Figure 6.1: The buttons of the model editor.

� the second one is used to visually draw the control panel for the
simulation of the corresponding model.

Apart from the conceptual model drop down menu, the starting point is the
tool bar in the upper part of the �rst graph panel as illustrat ed in the �gure 6.1
where six buttons appear:

� the �rst one is the grabber for selecting an object (individual or links) in
the drawing and is always selected by default;

� the second is the note object to write down documentary comments to
associate to individuals;

� the third is the link to associate a comment with an individual;

� the fourth is for creating or selecting individuals to draw;

� the �fth one is the link;

� the sixth is used for creating an output;

� the seventh is a link between an individual and an output to specify where
to send the probes;

� �nally, the sixth is the button to access the push down menu for manipu-
lating the grid behavior as already described in 2.4.

6.1 Individual edition

6.1.1 Drawing an individual

To draw an individual in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the �gure 6.2.

This dialog is composed of two parts:

� the upper part lists all the individuals available in the selected model.
Selecting one of these and typing either return or pushing the Existing
button shall draw the corresponding individual at the selected place.

� the down part is used to create a new individual with two �elds:

� a drop down menu from which to select the category one wants to
create an individual from;

� a name �eld to enter a name which is optional but can be used for
documentation purpose.

CHAPTER 6. THE CONCRETE MODEL EDITOR 50

Figure 6.2: The creation dialog for an individual.

Figure 6.3: The individual graphical form.

A rectangle is drawn as illustrated in the �gure 6.3 with a name which
composed of the optional name of the individual, a semi-colon and the category
name which is itself composed of the ontology name and the category name.
Under its identi�cation, the list of attribute values is ava ilable. Under the
name of the individual, there is a stereotype mentioning howthe individual
can be initialized. As it is possible to describe how to initialize a state for all
the individuals in the category behavior part, it is possible to specify for each
single individual how to initialize it. It is usefull when th e individual is itself
a complicated structure, for example when it generates additional individuals
before running the simulation.

6.1.2 Editing an individual

An individual can be edited by double-clicking on it, or by selecting it and
selectingEdit... from the Edit menu, or by right-clicking on it and selecting
Edit... in the popup menu. The individual editor dialog (6.4) shows up with
the following parts:

� the name of the category, which cannot be changed;

� the name of the individual which can be changed at will;

� a panel where one can specify the attribute values.

� a panel where it is possible to select among several ways to initialize the
individual and to edit the associated parameters if necessary. In this case,
it has been chosen to initialize it interactively. A list of t he parameters to
be speci�ed is displayed underneath.

CHAPTER 6. THE CONCRETE MODEL EDITOR 51

Figure 6.4: The individual editor with the attribute and the initialization panels.

Figure 6.5: The creation dialog for a link.

6.1.3 Deleting an individual

An individual can be deleted by selecting it and selectingRemove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the individual must be removed fromthe model:

� if yes, the individual is removed both from the drawing and the list of
existing individuals de�ned in the model;

� otherwise, only the drawing is removed but the individual remains as an
existing individual.

6.2 Link edition

6.2.1 Drawing a link

To draw a link in a given place it is enough to click on the corresponding button
and then from an individual (called the source individual) t o another one (called
the target individual), or to right click at the desired plac e to show up the same
toolbar as a popu menu. A new dialog is opened as illustrated in the �gure 6.5.

This dialog is composed of the list of available relations between the two
selected individuals as de�ned in the corresponding category of the source in-
dividual. Depending on the arity of the relation (i.e. the number of indices to
fully specify the relation), as many text �elds are displayed underneath to enter
the indices values. In the �gure 6.5, the relation is of arity 1, so only one index
must be speci�ed.

The arrow from the source individual to the target individua l is annotated
by the relation name as shown in the �gure 6.6. The index values are written
between parenthesis.

CHAPTER 6. THE CONCRETE MODEL EDITOR 52

Figure 6.6: The example of links.

6.2.2 Deleting a link

A link can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the link must be removed from the model:

� if yes, the link is removed both from the drawing and the list of links
de�ned for the model;

� otherwise, only the drawing is removed but the link remains unchanged.

6.3 Output speci�cation

The �gure 6.7 shows a concrete model with three individuals and one output.
The arrows are connecting the individuals to an output which is, in this case,
a 2D grid view, specifying that the corresponding probes must be sent to that
output.

6.3.1 Drawing an output

To draw an output in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the �gure 6.8.

This dialog is composed of two parts:

� the upper part lists all the outputs available in the selected model. Select-
ing one of these and typing either return or pushing theExisting button
shall draw the corresponding output at the selected place.

� the down part is used to create a new output with a drop down menu from
which to select the kind of output one wants to create.

CHAPTER 6. THE CONCRETE MODEL EDITOR 53

Figure 6.7: A concrete model with an output speci�cation.

Figure 6.8: The creation dialog for an output.

Figure 6.9: The output graphical form.

CHAPTER 6. THE CONCRETE MODEL EDITOR 54

Figure 6.10: The output editor with an attribute panel.

An ellipse is drawn as illustrated in the �gure 6.9 with a name which com-
posed of the kind of chosen output and an automatically generated name be-
tween parenthesis to uniquely identify this output for furt her manipulation.

6.3.2 Editing an output

An output can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...
in the popup menu. The output editor dialog (6.10) shows up with two parts:

� a drop down menu to choose the kind of output;

� a panel which depends entirely on the kind of output. In the �gure 6.10,
it is an editor to attribute colors to various probe values for visualization.
If the output is directed to a �le, the �le should be de�ned, et c.

The available outputs depend on the behavior associated to the correspond-
ing individual and are therefore described with the possible dynamical speci�-
cations. However, a number of general purpose outputs are provided and shall
be described in the following.

General

A number of general probe observers are de�ned:

� the probe view to monitor any probes.

� the probe output for saving the probes to a �le.

A probe view is a probe observer that displays sequentially all the received
probes. It is useful to monitor any entity.

A probe output is a probe observer that saves sequentially ina �le the
selected probes. It is parameterized by:

� the �le name;

� the separator between the saved �elds;

� whether the probe name, global time and local time has to be saved too;

CHAPTER 6. THE CONCRETE MODEL EDITOR 55

� the list of saved probes.

It can receive any probe of which the arguments shall be savedin the �le, one
per line, optionally preceded by its name and its global and local time stamps.

Plots

A number of probe observers for plotting data has been introduced:

� the category chart view is plotting series of which values are given by
categories;

� the series chart view is plotting series given by x,y coordinates.

� the times chart view is plotting series against the probe time stamps.

More precisely, a category chart view is a probe observer that visualizes
series plotted by categories. It is parameterized by:

� the chart name;

� the x axis name;

� the y axis name;

� the type of chart;

� whether it has a legend or not;

� whether it has tool tips or not;

It understands probes of the form: 'category',<categoryName>,[<seriesName>],<value>
where the names can be any string and the value is expected to be a double or
convertible to a double. The name of the series is optional when there is only
one series to display.

A series chart view is a probe observer that visualizes series given by x,y
pairs. It is parameterized by:

� the chart name;

� the x axis name;

� the y axis name;

� the type of chart;

� whether it has a legend or not;

� whether it has tool tips or not.

It understands probes of the form: 'series',[<seriesName>],<xValue>,<yValue>
where the name can be any string and the values are expected tobe doubles or
convertible to doubles. The name of the series is optional when there is only
one series to display.

A time chart view is a probe observer that visualizes series of which values
depends on time. It is parameterized by:

CHAPTER 6. THE CONCRETE MODEL EDITOR 56

� the chart name;

� the x axis name;

� the y axis name;

� whether it has a legend or not;

� whether it has tool tips or not;

� whether time is local or global;

� whether time is used straight or converted to date.

It understands probes of the form: 'time',[<seriesName>],<value> where
the name can be any string and the value is expected to be a double or convert-
ible to a double.The name of the series is optional when thereis only one series
to display.

Discrete2DSpaceView

A discrete 2D space view is a probe observer that visualizes spatial information.
The space is considered continuous by default, it becomes discrete when the
number of lines and columns (hence of cells) is speci�ed. Thecells are considered
to have layers corresponding to attributes. Only one cell layer can be displayed
at a time. The space is populated by objects of various types.Each object type
also has layers. Each object is referenced by an id which is unique for each type.
The parametrization is as follows:

� one can specify for any cell layer value range a color;

� one can specify for each object type layer value range a shape, a color and
a shadow color.

It understands probes of the forms:

� 'csize',<width>,<height> to specify the extent of the continuous space;

� 'dsize',<line>,<column> to specify the number of lines and columns of
the discrete space;

� 'cellLayers'{,<layerName>} to specify the names of the cell layers;

� 'objectLayers',<type>,{,<layerName>} to specify the names of the
object layers for a given type;

� 'cellState',<x>,<y>[,<layerName>],<value> to specify the value of a
layer of a cell;

� 'objetState'[,<type>],<id>,[,<layerName>],<value> to specify the
value of a layer of an object;

� 'cPosition'[,<type>],<id>,<x>,<y> to specify the position of an ob-
ject of a given type in continuous space;

� 'dPosition'[,<type>],<id>,<x>,<y> to specify the position of an ob-
ject of a given type in discrete space;

CHAPTER 6. THE CONCRETE MODEL EDITOR 57

Figure 6.11: The creation dialog for an output edge.

� 'cellEntity',<x>,<y>,<port> to specify the entity associated to a cell
(used to associate an observer to it);

� 'objectEntity'[,<type>],<id>,<port> to specify the entity associated
to an object (used to associate an observer to it);

The names can be any string, the values are expected to be doubles or convertible
to a doubles. All other values are integers. The object type is optional if there
is only one object type, and so it is for the layers.

GraphView

Coming soon.

6.3.3 Deleting an output

An output can be deleted by selecting it and selectingRemove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the output must be removed from the model:

� if yes, the output is removed both from the drawing and the list of existing
outputs de�ned in the model;

� otherwise, only the drawing is removed but the output remains as an
existing output.

6.3.4 Drawing an output edge

To draw an output edge in a given place it is enough to click on the corresponding
button and then from an individual (called the source indivi dual) to an output
(called the target output), or to right click at the desired p lace to show up the
same toolbar as a popu menu. A new dialog is opened as illustrated in the �gure
6.11.

This dialog is composed of the list of available output edgesbetween the
individual and the output.

6.3.5 Deleting an output edge

An output edge can be deleted by selecting it and selectingRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output edge must be removed fromthe model:

CHAPTER 6. THE CONCRETE MODEL EDITOR 58

Figure 6.12: The control panel toolbar.

� if yes, the output edge is removed both from the drawing and the list of
output edges de�ned for the model;

� otherwise, only the drawing is removed but the output edge remains un-
changed.

6.4 Control panel de�nition

The control panel editor is used to position the various control panel elements
on the control panel. The toolbar is shown in the �gure 6.12 where, apart from
the usual buttons, we have two main buttons:

� the green button is used to add an output view to the control panel;

� the yellow button is used to add a parameter editor to the control panel.

The �gure 6.13 shows a control panel with two parameter editors (yellow)
and one output view (green).

6.4.1 Drawing an output view

To draw an output view in a given place it is enough to click on the corresponding
button and then at the place where to put the output view, or to right click at
the desired place to show up the same toolbar as a popu menu. A new dialog
is opened as illustrated in the �gure 6.14.

This dialog is composed of two parts:

� the upper part lists all the output views available in the selected control
panel. Selecting one of these and typing either return or pushing the
Existing button shall draw the corresponding output view at the selected
place.

� the down part is used to create a new output view with a drop down menu
from which to select one of the output view de�ned in the concrete model
graph panel (see 6.3).

6.4.2 Deleting an output view

An output view can be deleted by selecting it and selectingRemove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output view must be removed fromthe control
panel:

� if yes, the output view is removed both from the drawing and the list of
output views de�ned for the control panel;

� otherwise, only the drawing is removed but the output view remains un-
changed.

CHAPTER 6. THE CONCRETE MODEL EDITOR 59

Figure 6.13: The control panel view.

Figure 6.14: The creation dialog for an output view.

CHAPTER 6. THE CONCRETE MODEL EDITOR 60

Figure 6.15: The creation dialog for a parameter editor.

6.4.3 Drawing a parameter editor

To draw a parameter editor in a given place it is enough to click on the corre-
sponding button and then at the place where to put the parameter editor or to
right click at the desired place to show up the same toolbar asa popu menu. A
new dialog is opened as illustrated in the �gure 6.11.

This dialog is composed of two parts:

� the upper part lists all the parameter editors available in the selected
control panel. Selecting one of these and typing either return or pushing
the Existing button shall draw the corresponding parameter editor at
the selected place.

� the down part is used to create a new parameter editor with twodrop
down menus:

� the �rst one is for selecting one of the individuals created in the
concrete model panel (see 6.1.1);

� the second one is for selecting one of the attribute to edit ofthe
individual.

6.4.4 Deleting a parameter editor

A parameter editor can be deleted by selecting it and selecting Remove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the parameter editor must be removed from the
model:

� if yes, the parameter editor is removed both from the drawingand the list
of parameter editors de�ned for the model;

� otherwise, only the drawing is removed but the parameter editor remains
unchanged.

Chapter 7

Some examples

7.1 Introduction

This chapter is considered as a stepwise tutorial to developyour own models.
All these examples are provided in the distribution in the example folder.

7.2 The rolling ball example

As an example, we shall model a simple system composed of one rolling ball and
a kicker. This example allows the illustration of a combination of continuous
and discrete time:

� the rolling ball is submitted to uniform movement described by the fol-
lowing equations:

x(t) = x0 + vx � t ; y(t) = y0 + vy � t

� at random time, the kicker computes a random two-dimensional vector
< k x ; ky > which is sent to the ball to change its trajectory in the following
way:

vx = vx + kx ; vy = vy + ky

This example has been programmed in Java and the user could look at
the source code of the packageexample where the classesClock , RollingBall ,
Kicker and Observer have been de�ned. To run it, open the projectexample.pml
in the folder example. The project contains two conceptual models:

Example1: is the conceptual model of the rolling ball example;

Example2: is the conceptual model of a cellular automata for simulating �re
spread.

To the conceptual models correspond two concrete models de�ning an instan-
tiation, the de�nition of some outputs and the associated control panel. To
actually run the simulation, select the corresponding simulation model and suc-
cessively push on the buttonsReset, Initialize and then Step as many time
as you want (or Runafter having entered an end date.

61

CHAPTER 7. SOME EXAMPLES 62

Figure 7.1: The conceptual model for a kicked and observed rolling ball.

7.2.1 De�ning the conceptual model

The conceptual model will be composed of two categories:RollingBall and
Kicker . The RollingBall is characterized by four attributes: two f or the initial
position (x0 and y0 corresponding tox0 and y0) and two for the speed (vx and
vy corresponding to vx and vy). The Kicker is characterized by one attribute:
the seed of its random generator used for the time of kicking the ball and the
generation of the random vector1.

If we want to visualize the position of the ball, the event-based nature of the
simulation will only be able to provide state changes when the ball is kicked.
To see the ball rolling between two successive kicks, we haveto sample the
trajectory. In order to do that, a third category is added to t he model to
sample the trajectory by asking at each �xed time step to the ball its position.
The resulting ontology in shown in �gure 7.1.

In addition, you have the de�nition of three relations:

� kicked which a relation of Kicker to send a kick to aRollingBall . Note
that a Kicker can kick simultaneously any number of balls.

� observer which is a port of RollingBall to send its position to an ob-
server (and it can have as many observers as it wants).

� observed which is a port of Observer to send a request for position (it
will always be a logical in�uence, of course).

The parameters can be edited (added, changed or removed) through the
category editor as shown in the �gure 7.2.

The relations (i.e. the de�nition of the relation name, card inality and type)
can be either drawn through the graphical editor or entered in the category
editor dialog as in �gure 7.3. If the relation are de�ned by th e category editor,
they will not show up in the graphical editor. They can be visualized by drawing
an arc and specifying an existing link as shown in �gure 7.4.

At that stage, the structure of the conceptual model (i.e. the ontology) is
entirely de�ned: the categories, attributes and relations.

7.2.2 De�ning the dynamics

For de�ning the behavior, you have to de�ne:

� the incoming and outgoing in�uences;

1To put the seed as a parameter is recommended if one wants to co ntrol the outcome of
the simulation, i.e. to produce exactly the same result for e ach simulation.

CHAPTER 7. SOME EXAMPLES 63

Figure 7.2: The conceptual model for a rolling ball with the attribute panel.

Figure 7.3: The rolling ball category with the relations panel.

Figure 7.4: De�nition of an arc from an existing relation de� nition

CHAPTER 7. SOME EXAMPLES 64

Figure 7.5: The rolling ball category with the probes panel

� the probes;

� the M-DEVS functions.

We assume thatRollingBall receives kicks and observation requests and sends
positions, Kicker sends kicks and the Observer sends observation requests and
receives positions. The checking of the consistency between what is sent or
received is currently very loose but can be reinforced by selecting the �verify�
check-bon in the scheduler. In a future release the possibility to check for
model consistency when de�ning the conceptual model will beenforced (at least
optionally).

We shall de�ne two identical probes: one for theRollingBall to signal the
state change (new x0, y0, vx and vy, see �gure 7.5) and one for the Observer
for the ball position, each time it receives the actual coordinates.

These declarative parts of the dynamics being made, we have to focus on
specifying each of the function of the corresponding M-DEVSmodel. The �gure
7.6 shows how to de�ne the initialization of the rolling ball . In the shown panel,
the Scripting behavior has been selected, which allows to specify the behavior
with script languages. In this case, the Java scripting language has been selected
(JavaInterpreter).

Note that we distinguish the attributes and the state of the model. The at-
tributes de�ne the structure of the ball for an external observer and corresponds
semantically to the speci�cation of its initial state. The s tate itself changes con-
tinuously, spontaneously or in response to incoming in�uences. In this case the
state is created and initialized from the parameters.

The �gure 7.7 shows the code for handling incoming external in�uences.
The principle is to loop through the set of in�uences (put in t he variable
externalInfluences), to check its type for each one and compute the state
change accordingly. Note that after the state change, a probe value is issued to
update all the possible visualization windows.

CHAPTER 7. SOME EXAMPLES 65

Figure 7.6: The rolling ball category with the initialize pa nel

The user is asked to further explore the model which is available as an
example, to see how the behaviors are de�ned in the various scripting languages.

7.2.3 De�ning the concrete model

As said before, the de�nition of the structure and dynamics is part of the concep-
tual model and cannot be run directly. From the conceptual model, a concrete
and simulatable model can be instantiated. You have to open aconcrete model
editor. At the top of the right panel, you have a list of conceptual models you
can take your de�nitions from. The �gure 7.8 shows a window in which a model
has been built by creating an instance of each of the categories (an instance of
clock has been added to de�ne the time rate at which the observer samples the
rolling ball). In this �gure, each port is linked to the prope r entity. The drawing
panel uses a modi�ed UML object diagram. The links are named (which is not
the case in UML). As in UML, the name of the instances is optional and for
documentation purpose only.

The actual structure of an individual is not only composed by its links but
also by the values of its attributes (interpreted as the speci�cation of the initial
state of the simulation). By editing an individual, the dial og of the �gure 7.9
appears where you can change the name of the individual (optional), trace or
untrace the individual 2, de�ne or change the attribute values.

2while tracing in the scheduler traces the posted and sent in� uences, tracing an individual
traces the call to the M-DEVS functions.

CHAPTER 7. SOME EXAMPLES 66

Figure 7.7: The rolling ball category with the external tran sition panel

Figure 7.8: The concrete model as an instance of the conceptual model.

CHAPTER 7. SOME EXAMPLES 67

Figure 7.9: The edition dialog for an individual.

Figure 7.10: The view on the rolling ball state

Once all the model has been instantiated and all the parameters de�ned (a
further version should also check for the model completeness), the user can open
the scheduler, select the model to run, initialize and run it, either step by step
or in a single run until the end date is reached as described inmore details in
the chapter 8.

In addition, a visualization window can be opened. For example, a pos-
sible view looks like the �gure 7.10 and is updated each time the individuals
change3. The top left panel displays the clock value, the top right panel displays
�KICKED� for some time each time the kicker is issuing a kick, the bottom left
panel displays the rolling ball state (updated only when kicked) and the bottom
right panel displays the actual position of the ball at each time step.

Such a display cannot be created interactively yet. A numberof visualiza-
tion items can be created, positioned within a control boardand linked to the
individuals receiving its probes and using them to update the visualization. An
editor for such a control panel (including the possibility to change the parame-
ters shall be available in a near future.

7.3 The stupid model

In [13], it is proposed as series of simple multi-agent models of increasing com-
plexity to both tach and benchmark the modelling and simulation platforms.
It is used here to illustrate designing models using Mimosa.We shall use the
Python scripting language for the details.

All the examples which follow can be loaded at once by openingthe project
StupidModel in the example folder. This project contains the eight versions

3Sorry if we did not program a panel to visualize trajectories yet.

CHAPTER 7. SOME EXAMPLES 68

with their corresponding concrete and simulation models. Feel free to lokk at
and to try each of these.

7.3.1 Stupid model 1

A number of bugs are randomly positioned in a toroidal grid and move at �xed
time steps into a random position within a +/- 4 cells distanc e.

De�ning the conceptual model

As suggested in [9], we propose for conceptual modeling to extensively use the
notions of wholes, parts and relations. Hence bugs are partsof a bug popu-
lation, cells are part of a space, and a position is a relationmapping the bug
population within the space. Accordingly, we propose a conceptual model with
�ve categories:

BugPopulation : is a population of bugs of which attribute is the number of
bugs;

Bug: is a bug with a given id and, of course, a part of a bug population;

Space: is a set of cells of which attributes are the number of lines and columns;

Cell: is a cell with given x,y coordinates and, of course a part of a space;

Position: is a mapping from the bugs into the cells giving the individual posi-
tion of each bug. It also encodes the topology of the space by de�ning the
cells neighborhood. We provide a seed attribute for its random generator.

The resulting conceptual model is shown in the �gure 7.11. The position refer-
ences both the bug population and the space. Each bug knows the position to
be able to position itself and move.

From the dynamical point of view, we shall describe in turn each of the
category.

� the bug population has only the function to create the bug population.
Therefor we de�ne the initialize function as follows:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel1.Bug",\

parameters(pair("no",i)))
linkPort(portRef(p,'position'),portRef('observer'))

sendProbe('population',nbBug)
sendLogical('observer','populationSize',nbBug)

The �rst four lines are used to generate the bug population. The last two
lines informs the position, respectively any probe observer of the popula-
tion size.

� the space is doing exactly the same for the cells:

CHAPTER 7. SOME EXAMPLES 69

Figure 7.11: The stupid conceptual model 1

for i in range(nbLine):
for j in range(nbCol):

addPort(port('cell',i*nbLine+j),"StupidModel1.Cell" ,\
parameters(pair('x',i),pair('y',j)))

sendProbe('space',nbLine,nbCol)
sendLogical('observer','spaceSize',nbLine,nbCol)

� a bug has in charge to position itself randomly at initialization (it could
also be done by the position!), and to move at each time step. For initial-
ization, it just asks to the position to do it 4:

sendLogical('position','randomPlace',no)

For moving, it is a combination of three functions: � int to say when to
perform the next move, � ext to ask the position to move the bug and� int

to perform the internal transition. Given that the only acti on to do is to
ask the position to move the bug, the latter function does nothing. So we
de�ne � ext :

sendExternal('position','randomMove',no,4)

assuming that position shall perform the random move within the given
distance (4) and � int :

sendInternal(1,'moveRandom')

� a cell is doing strictly nothing.

4notice that it is a logical in�uence because it is just used to initialize the simulation model:
it is not properly speaking an action

CHAPTER 7. SOME EXAMPLES 70

� the position is doing all the work by managing the position ofeach bug and
by positioning and moving the bugs around on request. The initialization
prepares the needed structures and functions:

populationSize = 0
spaceWidth = 0
spaceHeight = 0
positions = {}
random = newRandom(seed)
def put(id,x,y):

positions[id] = (x,y)
sendProbe('dPosition',id,x,y)

In particular, a function to put a bug in a given place is de�ned and
just adjusts the table of positions and signals the move to any interested
observer. The only external in�uence it receives is the request for random
moves, so� ext is de�ned as:

for inf in getInfluences('randomMove'):
id,amount = contentOf(inf)
x,y = positions[id]
incr = nextInt(random,amount)
if nextBoolean(random):

newX = (x+incr)%spaceWidth
else:

newX = (x-incr)%spaceWidth
incr = nextInt(random,amount)
if nextBoolean(random):

newY = (y+incr)%spaceHeight
else:

newY = (y-incr)%spaceHeight
put(id,newX,newY)

The move is randomly generated according to the toroidal grid. Finally,
the position must register the population and grid sizes as well as initialize
the bugs initial positions by de�ning � int :

for inf in getInfluences('populationSize'):
populationSize, = contentOf(inf)

for inf in getInfluences('spaceSize'):
spaceHeight,spaceWidth = contentOf(inf)

sendProbe('dSize',spaceHeight,spaceWidth)
for inf in getInfluences('randomPlace'):

if type(inf,'randomPlace'):
id, = contentOf(inf)
x = nextInt(random,spaceWidth)
y = nextInt(random,spaceHeight)
put(id,x,y)

Notice the possibility to decide the order in which to handle the in�u-
ences. Here the size declarations are handled before positioning the bugs,

CHAPTER 7. SOME EXAMPLES 71

Figure 7.12: The concrete model 1

although all these in�uences are received at once. For simplicity, we do
not test whether a cell is already occupied.

De�ning the concrete model

Given that the bug population and the space automatically generate the bugs
and the cells. It is enough to de�ne the bug population, the space and the
position, as well as de�ning the initial values. The resulting concrete model is
illustrated in the �gure 7.12. In addition, we de�ne a probe o bserver to visualize
the position of the bugs in the grid space. The Discrete2DSpaceView (see 6.3.2)
is used for this purpose.

Finally a control panel containing the Discrete2DSpaceView is de�ned (see
7.13).

Running the simulation model

Finally, the concrete model is used to generate the simulation model for the
scheduler. The scheduler �reset� button is used to actuallygenerate the ini-
tial simulation model and the control panel. The �init� butt on initializes the
simulation model calling the initialization of each initia l entity (i.e. the bug
population, the space and the position). It is at this stage that the bugs and
cells are created. Finally, the simulation model is ready torun (see �gure 7.14).

7.3.2 Stupid model 2

The bugs are allowed not only to move but also to grow startingfrom a size of
1 increased incrementally by 1. It is visualized as a changing shade color of the
bugs in the control panel.

CHAPTER 7. SOME EXAMPLES 72

Figure 7.13: The concrete model 1 control panel

Figure 7.14: The simulation model 1 control panel

CHAPTER 7. SOME EXAMPLES 73

Figure 7.15: The conceptual model 2

De�ning the conceptual model

The only change in the conceptual model structure is the addition of a relation
from the bug to the population in order to be able to inform it o f the size changes
(see �gure 7.15).

The only change concerns the bug population to create this new link and
the behavior of each individual bug. It touches:

� the initialization of the bug population:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel2.Bug",parameters(pair("no",i)))
linkPort(portRef(p,'position'),portRef('observer'))
linkPort(portRef(p,'population'),'self')

sendProbe('objectLayers','bug','size')
sendLogical('observer','populationSize',nbBug)

where a new port link is created from each bug to the population (notice
the use of the always de�ned port �self�).

� the initialization of the bug for setting the initial size to 1:

sendLogical('position','randomPlace',no)
size = 1
sendLogical('population','size',no,size)

� the � int of the bug to emphasize the double activity:

sendInternal(1,'moveRandomAndGrow')

� � ext of the bug remains the same

CHAPTER 7. SOME EXAMPLES 74

Figure 7.16: The concrete model 2

sendExternal('position','moveRandom',no,4)

� but the � int of the bug is now doing something:

if type(getInternalInfluence(),'moveRandomAndGrow'):
size = size+1
sendLogical('population','size',no,size)

Provision is made for the possibility to have a variety of internal behaviors,
hence the test.

� Given the logical in�uences sent to the bug population, these must be
handled appropriately by de�ning the � log of the bug population:

for inf in getAllInfluences():
if type(inf,'size'):

id,size = contentOf(inf)
sendProbe('objectState','bug',id,'size',size)

Both in initialization and in the � log of the bug population, probes are sent for
the visualization of the bug sizes.

De�ning the concrete model

In order to account for the bug growth, the concrete model is slightly changed by
adding a link between the bug population and the visualizer in order to monitor
the changes in the bug size. The result is illustrated in the �gure 7.16. The
�gure 7.17 shows the de�nition of the color codes parameterizing the visualizer.

Running the simulation model

The �gure 7.18 shows the resulting visualization while running the simulation.
A colored shadow appears and is modi�ed while the bugs are growing. It il-
lustrates the possibility to get the probes from various sources to compose a

CHAPTER 7. SOME EXAMPLES 75

Figure 7.17: De�ning the visualization of the bug size

single visualization in addition to the possibility to send probes to a variety of
observers.

7.3.3 Stupid model 3

The cells contain food of which quantity is growing over time. The bugs are
eating what is on the current cell and grow accordingly.

De�ning the conceptual model

The resulting conceptual model is shown in the �gure 7.19. The only modi�-
cation is the reciprocal relation between the bug and the cell because of their
interactions.

Because of the important induced changes, we shall describeagain in turn
each of the category.

� the bug population does not incur any change because everything is in
place for monitoring the bug size changes.

� the space has to work the same way as the bug population for monitoring
the cell food availability. Consequently, a link has to be created from each
cell to the space:

for i in range(nbLine):
for j in range(nbCol):

cell = port('cell',i*nbCol+j)
addPort(cell,"StupidModel3.Cell",\

parameters(pair('x',i),pair('y',j)))
linkPort(portRef(cell,'space'),'self') # <= HERE

sendProbe('cellLayers','food')
sendLogical('observer','spaceSize',nbLine,nbCol)

As for the bug population, the space is informed of the food availability
changes through logical in�uences to be handled by the� log function:

for inf in getAllInfluences():
if type(inf,'food'):

CHAPTER 7. SOME EXAMPLES 76

Figure 7.18: The simulation model 2 control panel

Figure 7.19: The stupid conceptual model 3

CHAPTER 7. SOME EXAMPLES 77

x,y,food = contentOf(inf)
sendProbe('cellState',x,y,'food',food)

� a bug has now in charge to de�ne its size and maximum consumption rate
at initialization:

size = 1
maxConsumptionRate = 1
sendLogical('position','randomPlace',no)
sendLogical('population','size',no,size)

For moving and eating, it is again the combination of three functions:
� int to say when to perform the next actions,� ext to ask the position to
move the bug and the cell to get food, and� int to perform the internal
transition. Given that the only actions are requests to others, the latter
function does nothing as in function one. So we de�ne� ext :

sendExternal('position','randomMove',no,4)
sendExternal('cell','consume',maxConsumptionRate)

and � int :

sendInternal(1,'moveRandomAndEat')

Finally, the cell shall inform the bug of the eaten quantity by a logical
in�uence to be handled by � log :

for inf in getAllInfluences():
if type(inf,'consumed'):

consumed, = contentOf(inf)
size = size+consumed
sendLogical('population','size',no,size)

The bug grows according to the actually received food. The in�uence
could have been an external in�uence, but, because an external in�uence
is only issued at the next transition, the food would have been consumed
only at the next step.

� a cell has now a certain quantity of food which is growing overtime. Ad-
ditionally, it has to react to food consumption requests. The initialization
becomes as follows:

availableFood = 0
maxFoodProduction = 0.1
rand = newRandom(6538672547)
sendLogical('space','food',x,y,availableFood)

Notice that the growth is random within a given range (maxFoodProduc-
tion). The spontaneous growth is managed by the usual functions � int :

sendInternal(1,'grow')

CHAPTER 7. SOME EXAMPLES 78

and � int :

availableFood = availableFood+maxFoodProduction*nextD ouble(rand)
sendLogical('space','food',x,y,availableFood)

The reaction to the consumption request is naturally managed by � ext :

for inf in getAllInfluences():
if type(inf,'consume'):

request, = contentOf(inf)
consumption = min(request,availableFood)
sendLogical('bug','consumed',consumption)
availableFood = availableFood-consumption
sendLogical('space','food',x,y,availableFood)

where the consumption depends on both the request and the available
food. However, it could happen that the spontaneous growth and the
consumption occurs at the same time, provoking a con�uent transition
� ext . It combines both � int and � ext and decides in which order things
happen (in this case growth is before consumption):

for inf in getAllInfluences():
if type(inf,'consume'):

availableFood = availableFood+maxFoodProduction*nextD ouble(rand)
request, = contentOf(inf)
consumption = min(request,availableFood)
sendLogical('bug','consumed',consumption)
availableFood = availableFood-consumption
sendLogical('space','food',x,y,availableFood)

� the position incurs only one change: changing the position of a bug implies
to modify the reciprocal links between the bug and the cell it is on:

def put(id,x,y):
bug = port('bug',id)
newCell = port('cell',y*spaceWidth+x)
if id in positions:
oldX,oldY = positions[id]
oldCell = port('cell',oldY*spaceWidth+oldX)
removePort(portRef('population',bug,'cell'))

removePort(portRef('space',oldCell,'bug'))
positions[id] = (x,y)
linkPort(portRef('population',bug,'cell'),portRef(' space',newCell))
linkPort(portRef('space',newCell,'bug'),portRef('po pulation',bug))
sendProbe('dPosition','bug',id,x,y)

It illustrates the full power of the link references to remove and create
links dynamically throughout the simulation.

CHAPTER 7. SOME EXAMPLES 79

Figure 7.20: The concrete model 3

De�ning the concrete model

In order to account for the cell food availability, the concrete model is slightly
changed by adding a link between the space and the visualizerin order to also
monitor the changes in the food availability. The result is illustrated in the �gure
7.20. The �gure 7.21 shows the de�nition of the color codes parameterizing the
visualizer.

Running the simulation model

The �gure 7.22 shows the resulting visualization while running the simulation.
The cell colors are shown according to the quantity of available food. Once
again it illustrates the possibility to combine multiple sources of data within a
single visualization.

7.3.4 Stupid model 4

This version does not add any new behavior but provides the possibility to
monitor individually the cells and bugs through the grid int erface.

De�ning the conceptual model

The conceptual model structure does not change and remains the one shown in
the �gure 7.19. The grid visualizer as described in 6.3.2 already provides the
possibility to probe the cells and objects which are visualized. However, for it
to work:

� the BugPopulation and the Space must provide the ports to access the
entities to monitor by using the probes 'cellEntity',<x>,<y>,<port>
and 'objectEntity',<type>,<id>,<port> as described in 6.3.2.

� each cell and bug must also send probe to advertise their state changes.

Accordingly:

CHAPTER 7. SOME EXAMPLES 80

Figure 7.21: De�ning the visualization of the food availability

Figure 7.22: The simulation model 3 control panel

CHAPTER 7. SOME EXAMPLES 81

� the bug population does inform the probe observer for each ofits bugs:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel4.Bug",parameters(pair("no",i)))
linkPort(portRef(p,'position'),portRef('observer'))
linkPort(portRef(p,'population'),'self')
sendProbe('objectEntity','bug',i,p) # <= HERE

sendProbe('objectLayers','bug','size')
sendLogical('observer','populationSize',nbBug)

� the space has to do the same thing for its cells:

for i in range(nbLine):
for j in range(nbCol):

cell = port('cell',i*nbCol+j)
addPort(cell,"StupidModel4.Cell",\

parameters(pair('x',i),pair('y',j)))
linkPort(portRef(cell,'space'),'self')
sendProbe('cellEntity',i,j,cell) # <= HERE

sendProbe('cellLayers','food')
sendLogical('observer','spaceSize',nbLine,nbCol)

� each bug has to send probes when its state changes in its initialization:

size = 1
maxConsumptionRate = 1
sendLogical('position','randomPlace',no)
sendLogical('population','size',no,size)
sendProbe('size',no,size) # <= HERE

and in its growth behavior (� log):

for inf in getAllInfluences():
if type(inf,'consumed'):

consumed, = contentOf(inf)
size = size+consumed
sendLogical('population','size',no,size)
sendProbe('size',no,size) # <= HERE

� and the same for the cells, as an example, in initialize:

availableFood = 0
maxFoodProduction = 0.1
rand = newRandom(6538672547)
sendLogical('space','food',x,y,availableFood)
sendProbe('food',x,y,availableFood) # <= HERE

but also in � ext , � int and � con .

CHAPTER 7. SOME EXAMPLES 82

Figure 7.23: Choosing a probe observer for cells and bugs

De�ning the concrete model

The concrete model remains strictly the same.

Running the simulation model

The �gure 7.23 shows dialog which appears when clicking on a cell. There are
two drop down menus:

� the top one is a list containing the clicked cell if any (there is no cell in a
continuous space) and the objects in the cell or around the click position.

� the bottom is a list of available probe observers for monitoring the chosen
object.

Clicking on the �add� button creates and connects the chosenprobe observer.

7.3.5 Stupid model 5

This version still does not add any new behavior but providesthe possibility to
parameterize the simulation by the initial number of bugs, the maximum daily
food consumption of the bugs and the maximum food productionof the cells.

De�ning the conceptual model

The conceptual model structure changes slightly to have themaximum food
consumption and food production appear as attributes in therelevant categories
(see 7.24). Now each cell and bug has the maximum food consumption and
production as attributes, as well as the bug population and space because these
two last categories are in charge of initializing the bugs and cells respectively.

Accordingly:

� the bug population does initialize each bug:

for i in range(nbBug):
p = port("bug",i)
addPort(p,"StupidModel5.Bug",\

parameters(pair("no",i),\
pair("maxFoodConsumption",maxFoodConsumption))) # <= H ERE

linkPort(portRef(p,'position'),portRef('observer'))
linkPort(portRef(p,'population'),'self')
sendProbe('objectEntity','bug',i,p)

sendProbe('objectLayers','bug','size')
sendLogical('observer','populationSize',nbBug)

CHAPTER 7. SOME EXAMPLES 83

Figure 7.24: The stupid conceptual model 5

� the space has to do the same thing for its cells:

for i in range(nbLine):
for j in range(nbCol):

cell = port('cell',i*nbCol+j)
addPort(cell,"StupidModel5.Cell",\

parameters(pair('x',i),pair('y',j),\
pair('maxFoodProduction',maxFoodProduction))) # <= HER E

linkPort(portRef(cell,'space'),'self')
sendProbe('cellEntity',i,j,cell)

sendProbe('cellLayers','food')
sendLogical('observer','spaceSize',nbLine,nbCol)

� each bug and each cell has now this variable de�ned and, therefore, it is
no longer necessary to initialize it separately.

De�ning the concrete model

Given the need to de�ne the maximum food production and consumption for
the space and the bug population respectively in addition to the initial bug
population, the concrete model includes these two new attributes. The result
is illustrated in the �gure 7.25. The control panel is now changed to add three
new parameters editor (see 7.25). In e�ect, any attribute of the concrete model
can be associated to an editor to be put on the control panel ifneeded.

CHAPTER 7. SOME EXAMPLES 84

Figure 7.25: The concrete model 5

Figure 7.26: The control panel 5 with the attribute editors

CHAPTER 7. SOME EXAMPLES 85

Figure 7.27: The control panel

Running the simulation model

The �gure 7.31 shows the control panel in which the three editors for the pa-
rameters are displayed and can be changed before initializing the model (after
initialization, the changes in the parameter values are no longer taken into ac-
count until the next initialization).

7.3.6 Stupid model 6

This version still does not add any new behavior but providesthe possibility to
display an histogram of the bug sizes.

De�ning the conceptual model

The conceptual model structure does not change and remains the one of the
�gure 7.24. The only di�erence is for the bug population to compute a size
distribution and to signal the changes of this distribution to any interested
probe observer:

CHAPTER 7. SOME EXAMPLES 86

� in the bug population two data structures are added: one for recording
the bug sizes and the histogram itself (here with 10 bins):

import math
bugSizes = []
sizeHisto = []
for i in range(10):

sizeHisto.append(0)
sendProbe('category',i,'size',0)

for i in range(nbBug):
p = port("bug",i)
bugSizes.append(0)
addPort(p,"StupidModel6.Bug",\

parameters(pair("no",i),\
pair("maxFoodConsumption",maxFoodConsumption)))

linkPort(portRef(p,'position'),portRef('observer'))
linkPort(portRef(p,'population'),'self')
sendProbe('objectEntity','bug',i,p)

sendProbe('objectLayers','bug','size')
sendLogical('observer','populationSize',nbBug)

Each time the sizes of the bug sizes are signaled through logical in�uences,
the histogram is updated in � log :

for inf in getAllInfluences():
if type(inf,'size'):

id,size = contentOf(inf)
bugSizes[id]=size
sendProbe('objectState','bug',id,'size',size)

for i in range(len(sizeHisto)):
sizeHisto[i] = 0

for size in bugSizes:
if size>10:

sizeHisto[9] += 1
else:

sizeHisto[int(size)] += 1
for i,v in enumerate(sizeHisto):

sendProbe('category',i,'size',v)

Nothing else is needed. Notice that the systematic use of aggregates like the
bug population and the space simpli�es dramatically how to compute aggre-
gated values as the histogram. A similar computation could be done for the
distribution of food availability.

De�ning the concrete model

In the concrete model, one must add a new visualizer for the histogram and link
it to the bug population instance. The result is illustrated in the �gure 7.28. The
histogram visualizer is described in the section 6.3.2 and can be parameterized
as shown in the �gure 7.25. The control panel is now changed toadd three new
parameters editor (see 7.31). In e�ect, any attribute of the concrete model can
be associated to an editor to be put on the control panel if needed.

CHAPTER 7. SOME EXAMPLES 87

Figure 7.28: The concrete model 6

Figure 7.29: The parameters for a histogram visualizer

CHAPTER 7. SOME EXAMPLES 88

Figure 7.30: The control panel 6 speci�cation with the new histogram

Running the simulation model

The �gure 7.30 shows the control panel in which the new histogram is shown
after 18 steps.

7.3.7 Stupid model 7

This version illustrates the possibility to stop the simulation when some condi-
tions occur. In this case the condition is when a bug gets a certain size.

De�ning the conceptual model

The conceptual model structure does not change and remains the one of the
�gure 7.24. The only di�erence is for the bug stop the simulation when a given
condition arises:

� in the bug growth (i.e. in � log) the condition is tested and the simulation
stopped is met:

for inf in getAllInfluences():
if type(inf,'consumed'):

consumed, = contentOf(inf)
size = size+consumed
sendLogical('population','size',no,size)
sendProbe('size',no,size)
if size > 3: # <= HERE

stop()

CHAPTER 7. SOME EXAMPLES 89

Figure 7.31: The control panel with the histogram

Running the simulation model

The simulation shall stop whenever the end date or the condition is met, either
case comes �rst. If one want the simulation to stop only when the condition is
met, one must provide a very large end date. It is thought as being a security
in case the condition is never met.

7.3.8 Stupid model 8

This version illustrates the possibility to output informa tion to a �le. In this
case, it is desired to output the minimum, mean and maximum bug size at each
cycle.

De�ning the conceptual model

The conceptual model structure does not change and remains the one of the
�gure 7.24. The only di�erence is the computation of the desired values:

� all the necessary information is already recorded in the bugpopulation for
the histogram. It is easy to also compute the min, max and meanfrom the
available information each time the sizes change in� log (the management
of the histogram has been removed for readability):

for inf in getAllInfluences():
if type(inf,'size'):

CHAPTER 7. SOME EXAMPLES 90

Figure 7.32: The concrete model 8

id,size = contentOf(inf)
bugSizes[id]=size
sendProbe('objectState','bug',id,'size',size)

min = max = bugSizes[0]
mean = 0
for size in bugSizes:

mean += size
if size<min:

min = size
elif size>max:

max = size
mean = mean/len(bugSizes)
sendProbe('sizes',min,mean,max)

De�ning the concrete model

It is enough to add to the concrete model a new probe observer for the output
of the probe information to a �le. A probe observer is already de�ned for this
purpose and described in the section 6.3.2. The resulting concrete model is illus-
trated in the �gure 7.32. The probe observer can be parameterized as illustrated
in the �gure 7.33. Here we choose to not output the dates of occurrence.

Running the simulation model

The result of the simulation on 10 steps is shown in �gure 7.34.

CHAPTER 7. SOME EXAMPLES 91

Figure 7.33: The �le output parametrization

Figure 7.34: The result of the simulating the stupid model 8

Chapter 8

The scheduler

This chapter is really about running simulations. The concrete models one
wants to run are available from the drop down menu on the top ofthe scheduler
window (see 8.1). All the models de�ned in the concrete modeleditor are shown
in this drop down menu to select from. Additionally, �les can be loaded within
the scheduler if saved in the scheduler format from the concrete model editor.
This possibility is o�ered to deliver turn key models to be run independently of
all the previously described editors.

A concrete model has to be selected from the list on the left. The initialize
button shall actually generate the simulation model out of the concrete model
description. The �rst step shall initialize the simulation model (the time shall
remain at 0). Further steps shall advance the time dependingon the closest
scheduled next date.

In the scheduler menu, the �rst item opens an inspector to visualize the list
of all created entities (see 8.2). This list is updated during the simulation to
re�ect the current list of entities. Clicking on an entity op ens an entity inspector
to monitor what is going on in the given entity (see �gure 8.3). The panel is
divided in four panes:

� the �rst pane lists the current parameters of the entity and t heir values;

� the second pane is the list of current ports with the list of entities their
are associated to;

� the third pane is used for managing the probe observers;

� �nally the fourth pane displays the warning messages when necessary.

Figure 8.1: The scheduler window.

92

CHAPTER 8. THE SCHEDULER 93

Figure 8.2: The main inspector window.

The most important pane certainly is the third pane because it monitors
what is going on inside of the inspected entity. It is composed of a drop-down
menu for selecting a probe observer and a panel to display theprobe observer
when it is displayable. By default, two probe observers are available:

� the probe view which displays the probes when received one after the
other. A button to clear the display is available if necessary;

� the probe output which send the probes to a �le. When selecting the
probe observer, a �le name as well as a separator string is asked. The
resulting �le can be loaded in excel or any similar tool.

At each time step it is possible to open a window showing the structure of
the simulated model as a graph where each node is an entity andeach edge is
a connection between the entities. The corresponding window is shown in the
�gure 8.4 and is made of three parts:

� The upper part is a drop down menu to select the kind of graph manipu-
lation: either transforming for changing the place of the graph, zoom it in
or out, etc., or picking for selecting one node and move it on the screen;

� The graph itself;

� A button to switch between two algorithms to layout the graph . Choose
the one which seems more appropriate to visualize the model.

CHAPTER 8. THE SCHEDULER 94

Figure 8.3: The entity inspector window.

CHAPTER 8. THE SCHEDULER 95

Figure 8.4: The graph of the simulated model.

Appendix A

Introduction to Scheme

Scheme is a functional language close to Lisp but with a purersemantics.
Roughly speaking only two constructs are provided in scheme:

� the function (called procedure in the Scheme community) written: (lambda
<parameters> <body>) where parameters is a list of parameter names
and body is a sequence of expressions.

� the application written (<function> <arg 1>: : :<argn >) where function
is a function as de�ned before andarg i are expressions.

Of course, anexpressionis either a function or an application. This seems overly
simplistic but it has been shown that it is enough to express any computation
one could dream of. Nevertheless, the resulting syntax would become unreadable
for any reasonable computation. The simplest way to overcome this problem
is to provide the possibility to associate names to expressions with the form:
(define <name> <expressions>) . A number of names have been prede�ned
in Scheme for all the current arithmetic operations as well as the operations on
very common data structures.

By the way, define is not a function name but the name of a syntactic
form which is transformed behind the scene in a proper application. The set
of possible syntactic forms can itself be extended, parameterizing the Scheme
interpreter with high level constructs at will (not explain ed in this introduction).

A structure or object is also called a literal expression is of the form:(quote
<something>) or (alternatively) '<something> . The something is either:

� a number

� #t and #f

� a character #n..

� a string "..."

� a symbol

� a pair (<something 1> . <something n>) or a list (<something 1>: : :<somethingn>)

� a vector #(<something 1>: : :<somethingn>)

96

APPENDIX A. INTRODUCTION TO SCHEME 97

The �rst four categories do not need the quote because they self-evaluate, i.e.
their value is themselves.

Finally, an additional power is acquired by the relationships between struc-
tures (or objects) and expressions. Of course, expressionstransform structures
into structures (it is what functions or all about). The nice thing is that (eval
<exp>) transforms the structure produced by the expression into anexpres-
sion...and computes its value as well. Therefore, one can write programs pro-
ducing programs which are further executed.

This appendix is not suppose to give a full course on Scheme but just pro-
vide a summary of the most common de�nitions for reference, including the
de�nitions introduced for use within Mimosa.

A.1 Control syntax

As in any language, there are some constructs for the usual control structures:
the sequence, the conditional and the loop.

(define <symbol> <exp>) the de�nition
(set! <symbol> <exp>) to change the de�nition
(begin <exp 1>: : :<expn >) the sequence of expressions
(if <exp> <exp true > <expfalse >) the conditional
(cond (<exp 1> : : :) : : :(else : : :)) the multiple contitional
(or <exp 1>: : :<expn >) sequence until true
(and <exp1>: : :<expn >) sequence until false

The loop is more complicated with the form(do (<iter 1>: : :<iter n >) (<cond>
: : :) : : :) where iter i is a variable of iteration of the form (<var i > <expinit >
<expstep >) with a variable name, an initialization expression and a step com-
putation expression, the condition expression must be truefor stopping the
iteration and the corresponding expressions are computed accordingly.

Finally, one must introduce the binding construct to create local variables
for various purposes:

(let ((<sym 1> <exp1>) : : :) <exp i >: : :) parallel binding
(let* ((<sym 1> <exp1>) : : :) <exp i >: : :) sequential binding
(letrec ((<sym 1> <exp1>) : : :) <exp i >: : :) complete binding

The main di�erence is that the association of values to symbols are avalaible
from the body alone in the �rst case, directly after the de�ni tion (and then for
the next de�nitions) in the second case and from the start in the third (allowing
self reference).

A.2 Booleans

There are two booleans #t and #f which are two symbols which evaluates to
themselves. Apart from and and or , we also have the following functions:

(boolean? <exp>) tests if boolean
(not <exp>) the negation
(eq? <exp1> <exp2>) strict equality
(eqv? <exp1> <exp2>) slight extension of strict equality
(equal? <exp 1> <exp2>) recursive (or structural) equality

APPENDIX A. INTRODUCTION TO SCHEME 98

A.3 Numbers

Scheme recognizes the integers (e.g. 51236457), rationals(e.g. 6235645/23672573),
reals (e.g. 4.6565e-3) and complex numbers (e.g. 3+5i). Themain distinction
is between exact and inexact representations of these. The prede�ned functions
are:

(number? <exp>) tests if number
(complex? <exp>) tests if complex
(real? <exp>) tests if real
(rational? <exp>) tests if rational
(integer? <exp>) tests if integer
(exact? <exp>) tests if exact
(inexact? <exp>) tests if inexact
(zero? <exp>) tests if zero
(positive? <exp>) tests if positive
(negative? <exp>) tests if negative
(odd? <exp>) tests if odd
(even? <exp>) tests if even
(= x1 : : :) equality
(< x1 : : :) monotonically increasing
(> x1 : : :) monotonically decreasing
(<= x1 : : :) monotonically non decreasing
(>= x1 : : :) monotonically non increasing
(abs x) the absolute value of the number
(min x1 : : :) the min of the numbers
(max x1 : : :) the max of the numbers
(+ z1 : : :) the sum of the numbers
(- z1 : : :) the di�erence of the numbers
(* z1 : : :) the product of the numbers
(/ z1 : : :) the quotient of the numbers
(quotient n1 n2) the quotient of the numbers
(remainder n1 n2) the remainder of the numbers
(modulo n1 n2) the modulo of the numbers
(gcd n1 : : :) the greatest common divisor of the numbers
(lcm n1 : : :) the lowest common multiple of the numbers
(numerator q) the numerator of the rational
(denominator q) the denominator of the rational
(floor x) the �oor of the real
(ceiling x) the ceiling of the real
(truncate x) the truncate of the real
(round x) the round of the real
(real-part z) the real part of the complex
(imag-part z) the imaginary part of the complex

As well as most transcendant functions.

A.4 Dotted pairs and lists

The most common data structure in Scheme is the dotted pair written (<left>
. <right>) . A list (<elt 1> <elt 2> : : : <elt n >) is nothing but (<elt 1> .

APPENDIX A. INTRODUCTION TO SCHEME 99

(<elt 2> . : : : (<elt n > . ()) : : :) where () is the empty list. We have the
following functions:

(pair? <exp>) tests if dotted pair
(null? <exp>) tests if empty list
(list? <exp>) tests if empty list or dotted pair
(car <exp>) left of dotted pair or �rst element of list
(cdr <exp>) right of dotted pair or rest of list
(set-car! <pair> <obj>) modi�es left of dotted pair
(set-cdr! <pair> <obj>) modi�es right of dotted pair
(list <obj 1> : : : <obj n >) creates a list
(length <list>) length of a list
(reverse <list>) reverse of a list
(list-tail <list> <k>) the k-th rest of a list
(list-ref <list> <k>) the k-th element of a list
(append <list 1> : : : <list n >) append of lists
(memq <object> <list>) member using eq?
(memv <object> <list>) member using eqv?
(member <object> <list>) member using equal?

An additional structure is the so-called a-list which is a list of pairs whosecar is
considered as a key and thecdr as the associated value. The related functions
are:

(assq <object> <list>) has key using eq?
(assv <object> <list>) has key using eqv?
(assoc <object> <list>) has key using equal?

and returns the found pair if any, #f otherwise.

A.5 Mimosa primitives

For Mimosa, we added three very common control structures for better read-
ability:

(when <cond> <exp1>: : :<expn >) executes if #t
(unless <cond> <exp 1>: : :<expn >) executes if #f
(for (<var> <list>) <exp 1>: : :<expn >) a simple loop over a list
(times (<var> <nb>) <exp 1>: : :<expn >) a simpler loop repeated nb times

Some functions are provided to access the Mimosa random generator:
(newRandom <seed>) creates a random generator
(nextBoolean <random>) generates a boolean randomly
(nextInt <random> <n>) generates an integer from 0 to n
(nextDouble <random>) generates a real from 0 to 1

Finally, the access to the DEVS entity functionalities are provided as follows:

� the variable self is linked to the current Java state;

� for each parameter, the variable with the same name is de�nedwith the
associated value within the global context. It can additionally be accessed
through the function (getParameter <sym>) ;

� when a script for a DEVS function is called, the global variable time is
linked to the duration elapsed since the last internal or external transition;

APPENDIX A. INTRODUCTION TO SCHEME 100

� each in�uence is a Java object whose structure can be accessed by the
following functions:

(is <influence> <name>) #t if the in�uence has the given name
(contentOf <influence>) the list of arguments
(getAllInfluences) the list of incoming in�uences
(getInfluence <name>) the list of in�uences of the given name
(getInternalInfluence) the internal in�uence

� the various events can be posted with the following functions:

(port <sym> n1 : : : nn) creates a port
(sendExternal <port> <sym> <exp 1>: : :<expn >) post an external event
(sendInternal n <sym> <exp1>: : :<expn >) post an internal event
(sendLogical <port> <sym> <exp 1>: : :<expn >) post a logical event
(reply <influence> <sym> <exp 1>: : :<expn >) reply to an in�uence
(sendProbe <sym> <exp1>: : :<expn >) post a probe

A port can be a string or a symbol when there is no indices.

Finally the structure changes can be made through the following functions:
(portRef <port 1>: : :<port n >) creates a port reference
(pair <sym> <exp>) creates a pair for the parameters
(parameters <pair 1>: : :<pair n >) creates parameters from the pairs
(addPort <portref> <category> <parameters>) creates a new entity
(linkPort <portref 1> <portref 2>) links referenced ports
(removePort <portref>) removes a references port

Appendix B

Introduction to Smalltalk

Smalltalk is a pure object oriented language but here a simpli�ed version of
which documentation can be found in [1] is used. The following section provides
the primitives for Mimosa.

B.1 Mimosa primitives

In general, we de�ned the classSelf with the class methods which are de�ned
in this section.

For Mimosa, we added two methods to create and access local variables (it
is guaranteed to have a copy of these for each entity):

Self at: <var> put: <value> to create or change a local variable
Self @ <var> to access the local variable value

Some functions are provided to access the Mimosa random generator:
Self newRandom creates a random generator
Self newRandom: <seed> creates a random generator
Self nextBoolean: <random> generates a boolean randomly
Self nextInt: <random> in: <n> generates an integer from 0 to n
Self nextDouble: <random> generates a real from 0 to 1

Finally, the access to the DEVS entity functionalities are provided as follows:

� for each parameter, the variable with the same name is de�nedwith the
associated value within the local variables. It can be accessed through the
method Self @ <parameter>;

� when a script for a DEVS function is called, the local variable time is
linked to the duration elapsed since the last internal or external transition
and can be accessed bySelf @ <time>;

� each in�uence is a Java object whose structure can be accessed by the
following functions:

Self is: <influence> type: <name> True if the in�uence has the given name
Self contentOf: <influence> the list of arguments
Self getAllInfluences the list of incoming in�uences
Self getInfluences: <name> the list of in�uences of the given name
Self getInternalInfluence the internal in�uence

101

APPENDIX B. INTRODUCTION TO SMALLTALK 102

� the various events can be posted with the following functions where the
arguments are expected to be an array:

Self port: <name> index: <ind> creates a indexed port
Self sendExternal: <port> name: <sym> post an external event without
Self sendExternal: <port> name: <sym> withArguments: <arg s> post an external event
Self sendInternal: n name: <sym> post an internal event without
Self sendInternal: n name: <sym> withArguments: <args> post an internal event
Self sendLogical: <port> name: <sym> post a logical event without
Self sendLogical: <port> name: <sym> withArguments: <args > post a logical event
Self reply: <influence> name: <sym> reply to an in�uence without
Self reply: <influence> name: <sym> withArguments: <args> reply to an in�uence
Self sendProbe: <sym> post a probe without argumen
Self sendProbe: <sym> withArguments: <args> post a probe

A port can be a string or a symbol when there is no indices.

Finally the structure changes can be made through the following functions:
Self portRef: <args>) creates a port reference
Self pair: <sym> with: <exp>) creates a pair for the
Self parameters: <pairs>) creates parameters
Self addPort: <portref> type: <category> parameters: <par ameters>) creates a new entit
Self linkPort <portref 1> to: <portref 2>) links referenced ports
Self removePort: <portref>) removes a referenced
Self die destroys itself

Bibliography

[1] http://bergel.eu/athena/.

[2] http://herzberg.ca.sandia.gov/jess/.

[3] http://jscheme.sourceforge.net/jscheme/main.html .

[4] http://www.alice.unibo.it:8080/tuprolog/.

[5] http://www.beanshell.org/.

[6] http://www.gnu.org/software/kawa/.

[7] http://www.jython.org/.

[8] Jacques Ferber and Jean-Pierre Müller. In�uences and reaction: a model
of situated multiagent systems. In Mario Tokoro, editor, Proceedings of
2nd International Conference on Multi-Agent Systems, pages 72�79, Kyoto,
Japan, December 1996. AAAI.

[9] Jean-Pierre Müller. The mimosa generic modeling and simulatiion plat-
form: the case of multi-agent systems. In Herder Coelho and Bernard
Espinasse, editors,5th Workshop on Agent-Based Simulation, pages 77�86,
Lisbon, Portugal, May 2004. SCS.

[10] Jean-Pierre Müller. Mimosa: using ontologies for modelling and simulation.
In Proceedings of Informatik 2007, Lecture Notes in Informatik, September
2007.

[11] Jean-Pierre Müller. Towards a formal semantics of event-based multiagent
simulations. In Proceedings of the Multi-Agent Based Simulation Workshop,
Estoril, Portugal, May 2008.

[12] Jean-Pierre Müller and Pierre Bommel.An introduction to UML for mod-
eling in the human and social sciences, volume Agent-based Modelling and
Simulation in the Social and Human Sciences, chapter 12. Bardwell Press,
2007.

[13] Steve Railsback, Steve Lytinen, and Volker Grimm. Stupidmodel and ex-
tensions: A template and teaching tool for agent-based modeling platforms.
2005.

[14] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer.Theory of Mod-
eling and Simulation. Academic Press, 2000.

103

