
MIMOSA user’s manual

(Draft version 1.2.2beta)

Jean-Pierre Müller1

CIRAD-ES-GREEN

jean-pierre.muller@cirad.fr

March 6, 2008

1
Associated researcher to LIRMM

Contents

1 Introduction 5

2 Running Mimosa 7

2.1 Downloading Mimosa . 7
2.2 Launching Mimosa . 7
2.3 The menus . 8
2.4 The editor windows . 10
2.5 The scheduler window . 11

3 The ontologies 13

3.1 Individuals . 13
3.2 Links . 14
3.3 Attributes . 14
3.4 Categories . 15
3.5 Relations . 16

4 The conceptual model editor 18

4.1 The editor . 18
4.2 Category edition . 19

4.2.1 Drawing a category . 19
4.2.2 Editing a category . 20
4.2.3 Deleting a category . 20

4.3 Relation edition . 22
4.3.1 Drawing a relation . 22
4.3.2 Editing a relation . 23
4.3.3 Deleting a relation . 23

5 The dynamics 24

5.1 Introduction . 24
5.2 The operational semantics . 25

5.2.1 The model . 25
5.2.2 The ports . 27
5.2.3 The influences . 28
5.2.4 The probes . 29
5.2.5 The time . 29

5.3 The behavior specification . 30
5.3.1 Programmatic specification 30
5.3.2 Scripted specification . 35

1

CONTENTS 2

5.3.3 State charts . 37
5.3.4 Further extensions . 37

6 The concrete model editor 40

6.1 Individual edition . 41
6.1.1 Drawing an individual . 41
6.1.2 Editing an individual . 42
6.1.3 Deleting an individual . 43

6.2 Link edition . 43
6.2.1 Drawing a link . 43
6.2.2 Deleting a link . 43

6.3 Output specification . 44
6.3.1 Drawing an output . 44
6.3.2 Editing an output . 45
6.3.3 Deleting an output . 46
6.3.4 Drawing an output edge 46
6.3.5 Deleting an output edge 46

6.4 Control panel definition . 47
6.4.1 Drawing an output view 47
6.4.2 Deleting an output view 49
6.4.3 Drawing a parameter editor 49
6.4.4 Deleting a parameter editor 49

7 Some examples 51

7.1 The rolling ball example . 51
7.1.1 Defining the conceptual model 51

7.2 Defining the dynamics . 52
7.2.1 Defining the concrete model 55

7.3 The stupid model . 57

8 The scheduler 58

A Introduction to Scheme 62

A.1 Control syntax . 63
A.2 Booleans . 63
A.3 Numbers . 64
A.4 Dotted pairs and lists . 64
A.5 Mimosa primitives . 65

List of Figures

2.1 The welcome window . 8
2.2 The conceptual model editor as an example of an editor window 10
2.3 The category list editor of ontologies 11
2.4 The graphical editor buttons . 11
2.5 The scheduler window . 12

3.1 Farmer and plot individuals. 14
3.2 Farmers owning plots. 14
3.3 The description of the plot p2. 15
3.4 A category hierarchy of plots and people 15
3.5 A category hierarchy of plots and people with a relationship . . . 16

4.1 The buttons of the ontology editor. 18
4.2 An annotated category. 19
4.3 The creation dialog for a category. 19
4.4 The category graphical form. 20
4.5 The category editor with the attribute panel. 21
4.6 The category editor with the inherited attributes. 21
4.7 The creation dialog for a relation. 22
4.8 The example of a relation. 22
4.9 The relations of a category. 23

5.1 The behavior panel of the category. 25
5.2 The behavior panel of a simple object. 39

6.1 The buttons of the model editor. 41
6.2 The creation dialog for an individual. 42
6.3 The individual graphical form. 42
6.4 The individual editor with the attribute panel. 42
6.5 The creation dialog for a link. 43
6.6 The example of a link. 44
6.7 A concrete model with an output specification. 44
6.8 The creation dialog for an output. 45
6.9 The output graphical form. 45
6.10 The output editor with an attribute panel. 46
6.11 The creation dialog for an output edge. 47
6.12 The control panel toolbar. 47
6.13 The control panel view. 48

3

LIST OF FIGURES 4

6.14 The creation dialog for an output view. 48
6.15 The creation dialog for a parameter editor. 49

7.1 The conceptual model for a kicked and observed rolling ball. . . . 52
7.2 The conceptual model for a rolling ball with the attribute panel. 52
7.3 The rolling ball category with the relations panel. 53
7.4 Definition of an arc from an existing relation definition 53
7.5 The rolling ball category with the probes panel 54
7.6 The rolling ball category with the initialize panel 55
7.7 The rolling ball category with the external transition panel . . . 56
7.8 The concrete model as an instance of the conceptual model. . . . 56
7.9 The edition dialog for an individual. 57
7.10 The view on the rolling ball state 57

8.1 The scheduler window. 58
8.2 The main inspector window. 59
8.3 The entity inspector window. 60
8.4 The graph of the simulated model. 61

Chapter 1

Introduction

Mimosa1 is an extensible modeling and simulation platform ([9]). It is aiming
at supporting the whole modeling and simulation process from the conceptual
model up to the running simulations.

The modeling process is assumed to be constituted iteratively of the following
stages:

The conceptual modeling stage: it consists in elaborating the ontology of
the domain as a set of categories, their attributes and their relationships,
either taxonomic or semantical.

The dynamical modeling stage: in order to describe the dynamics of the
categories defined in the first phase, one must decide on the choice of
paradigm (differential equations, straight scripting, agent-based, etc.) for
each category. The paradigm is described using a built-in meta-ontology.
Given the choice of dynamical paradigm, one must specify the possible
states and state changes according to the chosen paradigm.

the concrete modeling stage: the previously described stages define the vo-
cabulary in which the concrete model(s) can be described as a set of indi-
viduals linked to each other and with given attribute values.

the simulation specification stage: apart from the structure of the model
to simulate as described in the previous stage, an important work consists
in deciding which attributes can be considered as fixed parameters, which
ones can be manipulated by the user, how to output the states of the
model (plots, grids, databases, statistical tools, etc.)

the simulation stage: it consists in running the simulations themselves by
creating the simulation model to run as a set of entities linked through
ports by connections, by associating the means to specify the input pa-
rameters and to handle the outputs of the simulations and by actually
simulating it.

In the following, we shall describe these stages in turn. But before, we shall
shortly introduce how to run the system.

1It is the french acronym for “Méthodes Informatiques de MOdélisation et Simulation

Agents”: computer science methods for agent-based modeling and simulation

5

CHAPTER 1. INTRODUCTION 6

Mimosa is also implemented to be multi-lingual. For the time being only
english and french are provided; spanish is coming soon. The user’s manual is
only in english. Most of the explanations still apply even if the menus and titles
are not the same.

Chapter 2

Running Mimosa

2.1 Downloading Mimosa

Mimosa is a free software under LGPL license and CIRAD copyright. The
source and code is available on SourceForge.

If you are only interested in the program itself, you can go to the Mimosa
site on SourceForge: http://sourceforge.net/projects/mimosa. You just
have to follow the link “dowload” to go to the page where you can download the
software. How to run it is explained in the next section.

If you are interested by the software itself (or even want to contribute), feel
free to access it via the CVS server at:

pserver:anonymous@mimosa.cvs.sourceforge.net/cvsroot/mimosa.
The latest version is currently under the branch: version2006-04-19. The

tagged versions version101beta and version110beta can be dowloaded but,
of course, are not fully up to date. If you want to be a developer, just create an
account on SourceForge and send a message to:

jean-pierre.muller@cirad.fr

to give the name of your account and to explain what you want to do.

2.2 Launching Mimosa

Mimosa is written in Java 1.5 and can be run on any platform (both hardware
and operating system) as long as at least Java JRE 1.5 is installed.

For the time being, Mimosa is provided as a folder containing:

• mimosa.jar which is the main program to be launched by typing: java

-jar mimosa.jar or by double-clicking on it if your OS has Java inte-
grated in it.

• a libs folder containing the libraries necessary for running Mimosa.

• an example folder containing some examples to load within Mimosa for
exploring its functionalities.

• a documentation folder for the documentation (it should be soon or later
a user’s manual (this one), a programmer’s manual and the full javadoc
hierarchy).

7

CHAPTER 2. RUNNING MIMOSA 8

Figure 2.1: The welcome window

• a plugins folder contains so-called plugins which are either hard-coded ex-
amples or additional dynamical specification paradigms. Most of Mimosa
is assumed to be sooner or later distributed in this form.

When launching Mimosa, a first window is opened to choose your language
(see figure 2.1). The window shall appear in your operating system language as
well as the choice by default. However, depending with whom you are working,
any other available language can be selected. Thereafter, a window with an
editor for conceptual modeling (see 3). The next section describes the menus in
detail.

2.3 The menus

Four menus are provided:

File: this menu provides access to all the functionalities related to the window
which is active or to open new windows:

New: is used to open any of the following new windows:

Conceptual model editor: opens a window for editing concep-
tual models;

Mereology editor: opens a window for editing more sophisticated
conceptual models (in particular with whole/part relationships,
what mereology is all about!). Currently, it is not yet fully op-
erational;

Concrete model editor: opens a window for editing concrete mod-
els (as instances of conceptual models);

Scheduler: opens a scheduler control window for running the sim-
ulation models.

Open...: loads the content of a file depending of the selected window.
The file must contain an appropriate XML representation. The kind
of content which can be loaded depends on the active window. If
it is a conceptual model editor, only a saved conceptual model can
be loaded. If it is a mereology window, only a saved mereological or
above model can be loaded. If it is a concrete model editor, only a
saved concrete model can be loaded. In the last case, be sure that
the conceptual models used by the concrete model have been loaded
beforehand. Finally, if it is a scheduler window, only the XML files

CHAPTER 2. RUNNING MIMOSA 9

especially generated from the concrete model editor for this purpose
can be loaded1.

Save: saves the model currently edited in the active window in the asso-
ciated file (the last file it was saved to). If it was never saved before,
a file chooser dialog opens.

Save as...: saves the model currently edited in the active window in a file
to specify regardless of the last save (or open).

Print...: prints the content of the current window if applicable (it is ap-
plicable when a graph is displayed).

Restore...: this item is only used if you defined a new meta-ontology in
a so-called plugin and you want to dynamically reload the plugins
definitions for further use without relaunching Mimosa.

Edit: this menu provides the contextual editing functionalities provided for
the selected window or object. Any editor provides at least the following
functionalities in addition to the usual cut, copy and paste:

Add: to add a new object (categories, individuals, states, etc.);

Change: to change the name of an object when there is an associated
name;

Edit: to edit the structure of an object (the structure depends on the
object and, sometimes, includes the associated behavior description);

Delete: to remove the selected object(s);

Delete all: to remove all the defined objects.

Window: this menu provides quick access to the opened windows. One of these
is always accessible even if not shown by default:

Output: to display the output window which is a console containing: a
panel for user specific output, a panel where error are displayed and
a panel where the traces are displayed.

Help: this menu gives access to a number of tools for debugging:

Statistics: displays in the output window some statistics about the data
structures used by the scheduler: number of created entities and
usage of the influences;

Predefinitions: displays in the output window the predefinitions as de-
fined in the scripting mechanism;

Show content: displays in the output window the content of the tables
created by the various editors which are the data structures behind
the scenes;

Script interpreter: displays a window in which the user can enter ex-
pressions in any of the provided scripting languages in order to test
the code. The results are displayed in the output window when push-
ing the eval button.

1This possibility is provided to create stand-alone models without the associated conceptual

models.

CHAPTER 2. RUNNING MIMOSA 10

Figure 2.2: The conceptual model editor as an example of an editor window

2.4 The editor windows

Each editor window has the same structure (see the figure 2.2). It is divided in
two vertical panels.

The left panel contains the list of existing models (either conceptual or con-
crete) referenced by their names. In Mimosa, these models are also referred to
as ontologies. One can select an existing model (in the model editor) or ontology
(in the ontology editor) by left-clicking on its name. By right-clicking on the
panel, one accesses a popup menu where it is possible to add a new ontology,
change its name or delete it. It is highly recommended to create a new ontol-
ogy each time one is describing a different structure for modularity and reuse
reasons.

The right panel is editor specific and usually allows multiple views of the
same ontology or parts of it. In most cases a graphical view is provided. In the
figure 2.2, there are three editor panels. The shown one is the graphical editor
panel. The other two are used to edit categories and influence types (see 5.2.3)
as lists. The figure 2.3 shows the list editor where it is also possible to add,
change the name, edit and remove categories.

On the top of any drawing view, there is a toolbar with a number of model
specific buttons. These buttons are specific and shall be described in the related
chapters. These editing buttons are also available as a popup menu when right-
clicking in the drawing area. The last button is a drop down menu to manipulate
the editor window (zooming in and out, reducing, enlarging or hidding/showing
the grid for objects alignment). The figure 2.4 shows the buttons for editing

CHAPTER 2. RUNNING MIMOSA 11

Figure 2.3: The category list editor of ontologies

Figure 2.4: The graphical editor buttons

mereological conceptual models.
Any created object can be edited by double-clicking on it. On right-clicking

on an object, one can access a popup menu for editing (same as double-clicking)
or deleting the object.

2.5 The scheduler window

On the top of the scheduler window (see 2.5), the list of existing models is
provided for inclusion within the list of available models to the scheduler. It
is also possible to add additional models to simulate by loading them from
scheduler specific files. This possibility is used when delivering turn key models.

The bottom of the scheduler window is divided in two vertical panels.
In the left panel, there is the list of existing models (as added from the model

editor or from files). Exactly one model must be selected to be run.
The right panel is divided in three horizontal panels:

1. the top panel has two check boxes for debugging:

Trace: to turn tracing on and off. If the trace is on, the influences posted
and sent are displayed in the trace window.

CHAPTER 2. RUNNING MIMOSA 12

Figure 2.5: The scheduler window

Verify: to turn verifying on and off. If the verify is on, all the declara-
tions (names, types and cardinality) are checked during simulation.
It slows down the simulation quite a bit but it is very useful for
checking whether the behavior is consistent with the declarations.

as well as a button to visualize the simulated structure as a graph. Cur-
rently, the graph is not updated while running the simulation. Therefore,
the button has to be pushed each time, one wants to visualize the current
state (to be improved later on).

2. the middle panel displays the state of the simulation (unknown, initialized,
running or stopped) and the current date (in global time). An end date
can be entered to specify when to stop the simulation. The core simulation
system being event-based, this is NOT a number of steps but really an
end date.

3. the bottom panel has buttons for controlling the simulation:

Initialize: for putting the model in its initial state. The current date
becomes always 0.

Run: to run the simulation until the provided end date is reached. If the
end date is les or equal to the current date, nothing happens.

Step: to run one cycle of the simulation. All the influences scheduled at
the next date are executed.

Stop: to stop the simulation before the end date is reached. The current
cycle is always completed (and cannot be interrupted).

Each scheduler window is associated to its own thread, so there is a pos-
sibility of having several scheduler window opened to run several simulations
simultaneously.

Chapter 3

The ontologies

In modeling and simulation, the structure is often understood as a composition
of models, each model computing a function to produce outputs (outgoing events
or values) from inputs (incoming events or values). Of course, this composition
reflects the structure of the system one wants to model but no discourse on how
to describe a system structure is explicitly given. On the other hand, Artificial
Intelligence has focused part of its theories on how people describe the reality.
This part of Artificial Intelligence evolved, partly under the pressure of the web
developments (both about its contents and its services), into what is called today
the description of ontologies.

The term ontology has its origin in philosophy, where it is the name of a
fundamental branch of metaphysics concerned with existence. According to
Tom Gruber at Stanford University, the meaning of ontology in the context of
computer science, however, is “a description of the concepts and relationships
that can exist for an agent or a community of agents.” He goes on to specify that
an ontology is generally written, “as a set of definitions of formal vocabulary”.

Contemporary ontologies share many structural similarities, regardless of
the language in which they are expressed. Most ontologies describe individuals,
categories, attributes, and relations. In this section each of these components is
discussed in turn as well as the related Mimosa specification. More descriptions
can be found in [10, 11].

3.1 Individuals

Individuals are the basic, "ground level" components of an ontology. The in-
dividuals in an ontology may include concrete objects such as people, animals,
tables, automobiles, molecules, and planets, as well as abstract individuals such
as numbers and words. Strictly speaking, an ontology need not include any in-
dividuals, but one of the general purposes of an ontology is to provide a means
of classifying individuals, even if those individuals are not explicitly part of the
ontology. In Mimosa, the model editor is provided for defining the individuals,
out of the defined categories. Only the individuals can actually behave and
therefore be simulated. In figure 3.1, we have three plots (p1, p2 and p3) and
two people (John and Paul). The name of the individual is optional and indi-
cated before the “:”. The name after the semi-colon shall be explained in the

13

CHAPTER 3. THE ONTOLOGIES 14

Figure 3.1: Farmer and plot individuals.

Figure 3.2: Farmers owning plots.

following. It actually is the name of the category the individual belongs to.

3.2 Links

For the model to be properly called a structure, these individuals usually are
linked to each other in some meaningfull way. In our example, the figure 3.2
shows some links between the individuals describing that John is proprietary of
p1 and p2, while Paul is proprietary of p3. The proprietary link is indicated by
the name ownership.

3.3 Attributes

Individuals in the ontology are described by specifying their attributes. Each
attribute has at least a name and a value, and is used to store information that
is specific to the individual it is attached to. For example the p2 individual has
attributes such as:

surface 20

cover tree

The value of an attribute can be a complex data type; in this example, the value
of the attribute called cover could be a list of values, not just a single value.
In the figure 3.3, some of the attributes are represented.

CHAPTER 3. THE ONTOLOGIES 15

Figure 3.3: The description of the plot p2.

Figure 3.4: A category hierarchy of plots and people

3.4 Categories

Categories are the specification of the common features of groups, sets, or col-
lections of individuals. They are abstractions over sets of concrete individuals.
Some examples of categories are:

Person : the category of all people (describing what is common to all people);

Molecule : the category of all molecules (describing what is common to all
people);

Number : the category of all numbers;

Vehicle : the category of all vehicles;

Car : the category of all cars;

Individual : representing the category of all individuals.

Importantly, a category can subsume or be subsumed by other categories.
For example, Vehicle subsumes Car, since (necessarily) anything that is a mem-
ber of the latter category is a member of the former. The subsumption relation
is used to create a hierarchy or taxonomy of categories, with a maximally general
category which is called Individual in Mimosa, and very specific categories like
MaizeFarmer at the bottom. Figure 3.4 shows such a hierarchy of categories.

Usually what is common to a collection of individuals is that they share
the same attributes. In the figure 3.4, all the people have a name and an
age. We also assume that each farmer has a cashflow (but not a herder!). By
subsumption, any farmer and any herder has also a name and an age because
they are particular case of Person. In Mimosa an attribute has a name, a type

CHAPTER 3. THE ONTOLOGIES 16

Figure 3.5: A category hierarchy of plots and people with a relationship

which can be only a single type (short, integer, long, float, double, string and
color) and a cardinality to have list of values. If an attribute refers to another
category, it is a relationships and no longer an attribute.

3.5 Relations

An important use of relations is to describe the relationships between individ-
uals in the ontology. In fact a relation can be considered as an attribute whose
value is another individual in the ontology, or conversely an attribute can be
considered as a relationship with another individual (a number is also an indi-
vidual, instance of the category of numbers). For example in the ontology that
contains the Farmer and the Plot, the Farmer object might have the following
relation:

ownership Plot

This tells us that the Plot can be owned by a Farmer. Together, the set of
relations describes the semantics of the domain. In the figure 3.5, a relation has
been added accordingly. In addition, we have also declared that a person can be
proprietary of any number of plots. One can see that the individuals described
in figure 3.2 appear to be instances of the categories described in 3.5 and that
their links appear to be instances of the related relations.

In Mimosa, a relation is uni-directional and links a category to another, with
a cardinality.

The most important type of relation is the subsumption relation (is-superclass-
of, the converse of is-a, is-subtype-of or is-subclass-of) already mentioned in the
previous section.

Another common type of relations is the meronymy relation (written as part-
of) that represents how objects combine together to form composite objects. For
example, if we extended our example ontology to include objects like Steering
Wheel, we would say that "Steering Wheel is-part-of Ford Explorer" since a
steering wheel is one of the components of a Ford Explorer. If we introduce
part-of relationships to our ontology, we find that this simple and elegant tree
structure quickly becomes complex and significantly more difficult to interpret
manually. It is not difficult to understand why; an entity that is described as
’part of’ another entity might also be ’part of’ a third entity. Consequently,
entities may have more than one parent. The structure that emerges is known

CHAPTER 3. THE ONTOLOGIES 17

as a Directed Acyclic Graph (DAG). This aspect is not introduced in the on-
tological level of Mimosa but will be further discussed in the mereological level
where, precisely, a stronger account of meronymy is introduced (but not yet
implemented at this stage).

The part of the ontology consisting of the categories, attribute descriptions
and relations (either taxonomic or semantical) shall be called the conceptual

model. The part of the ontology consisting of the individuals, their attribute
values and their links shall be called the concrete model. In the following the
editor to create the conceptual model shall be described. In addition, we shall
describe how to specify the dynamics associated to each category. Thereafter,
we shall introduce the concrete model editor.

Chapter 4

The conceptual model editor

4.1 The editor

The conceptual model editor is made of three panels for editing the conceptual
model:

• the graph panel for graphical editing.

• the list panel for editing the ontology as a list of definitions (a kind of
dictionary).

• the list panel of influence types to be explained in the section 5.

The list panel is the reference to know all the categories defined in the edited
conceptual model. In effect, a category may not appear in the graph panel.
Conversely, a category may appear several times in the graph panel as well as
categories from other conceptual models. The rational behind this behavior
is that the drawing (hence the graph panel) must have an explanatory power
(not only a definitory one) and therefore any drawing clarifying the explanation
should be possible.

We shall concentrate on the graph panel which is nevertheless easier to use
for defining categories. The starting point is the tool bar in the upper part of
the window as illustrated in the figure 4.1 where seven buttons appear:

• the first one is the grabber for selecting an object (category or relations)
in the drawing and is always selected by default;

• the second is the note object to write down documentary comments to
associate to categories;

• the third is the link to associate a comment with a category;

Figure 4.1: The buttons of the ontology editor.

18

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 19

Figure 4.2: An annotated category.

Figure 4.3: The creation dialog for a category.

• the fourth is for creating or selecting categories to draw;

• the fifth one is the taxonomic relationship;

• the sixth is the semantic relationship;

• finally, the seventh is the button to access the push down menu for ma-
nipulating the grid behavior as already described in 2.4.

The first three buttons as well as the last one are always present for each graph
editor, so it shall not be explained again. The figure 4.2 shows the use of a note.

4.2 Category edition

4.2.1 Drawing a category

To draw a category in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the figure 4.3.

This dialog is composed of two parts:

• the upper part lists all the categories available in all the opened ontologies.
Selecting one of these and typing either return or pushing the Existing

button shall draw the corresponding category at the selected place;

• the down part is used to create a new category with a name field to enter
a new name (which must be unique within the current ontology).

A rectangle with either one or two subparts shall be drawn at the selected
place 4.4:

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 20

Figure 4.4: The category graphical form.

• the upper part has two lines:

– the first line is the name of the category prefixed by the name of the
ontology;

– the second line is the name of the way to define the dynamics for this
category1. NativeState is chosen by default and does nothing.

• the down part is the list of attributes (for the time being, the attribute
specifications are not shown).

4.2.2 Editing a category

A category can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...

in the popup menu. The category editor dialog (4.5) shows up with the following
parts:

• the name of the category, which cannot be changed;

• an “abstract” check box to specify whether the category can have instances
or not (e.g. most probably, in our example, there shall not be direct
instances of Person, but only of Farmer and Herder);

• the super type, i.e. the category subsuming this category;

• a panel where one can specify either the attributes, the relations and the
behavior (see chapter 5).

In figure 4.5, one shows the attribute panel where the local attributes can be
added or deleted through a popup menu. Additionally, one can see the list of
inherited attributes as shown in figure 4.6, but this list cannot be edited. Only
the locally defined attributes can be edited, the inherited list being computed.

4.2.3 Deleting a category

A category can be deleted by selecting it and selecting Remove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the category must be removed from the ontology:

• if yes, the category is removed both from the drawing and the list of
categories defined in the ontology;

• otherwise, only the drawing is removed but the category remains as an
existing category.

1For UML literates, it looks mike a stereotype, and in fact it has a related semantics with

respect to the MDA specifications.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 21

Figure 4.5: The category editor with the attribute panel.

Figure 4.6: The category editor with the inherited attributes.

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 22

Figure 4.7: The creation dialog for a relation.

Figure 4.8: The example of a relation.

4.3 Relation edition

4.3.1 Drawing a relation

To draw a relation in a given place it is enough to click on the corresponding
button and then from a category (called the source category) to another one
(called the target category), or to right click at the desired place to show up
the same toolbar as a popu menu. A new dialog is opened as illustrated in the
figure 4.7.

This dialog is also composed of two parts even if in the figure 4.7 only one
shows up:

• the upper part lists all the existing relations available between the two
selected categories. Selecting one of these and typing either return or
pushing the Existing button shall draw the corresponding relation be-
tween the two categories.

• the down part is used to create a new relation with three fields:

– a name field to enter a new name (which must be unique within the
source category);

– an arity field to possibly create a family of relation names indexed
by the given number of indices;

– a cardinality field to specify whether the relation can reference one,
several or any number of objects of the given target category.

The arrow from the source category to the target category is annotated
by all the relevant information as shown in the figure 4.8. The arity is written
between parenthesis. It means that the links between individuals can be named:
ownership(0), ownership(1), and so on. Additionally, the “*” means that each
of these links can be drawn with any number of plots.

The list of defined relations for a category also appears in the relation panel
of the category editor as shown in the figure 4.9. A relation can be added or

CHAPTER 4. THE CONCEPTUAL MODEL EDITOR 23

Figure 4.9: The relations of a category.

removed directly from this panel but the added relations shall be drawn only if
requested as an existing relations.

The subsumption or taxonomic relationships is a particular case where noth-
ing need to be specified but the source and target categories.

4.3.2 Editing a relation

A relation can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...

in the popup menu. The same editor appears as for creating it.

4.3.3 Deleting a relation

A relation can be deleted by selecting it and selecting Remove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the relation must be removed from the model:

• if yes, the relation is removed both from the drawing and the list of rela-
tions defined for the source category;

• otherwise, only the drawing is removed but the category remains un-
changed.

A relation can also be removed from the relation panel of the source category
editor. If it is deleted this way, all the drawings of the relation shall disappear
as well.

Chapter 5

The dynamics

5.1 Introduction

For each category, one can associate a specification of the dynamics of the
corresponding individuals. Basically, it is made by selecting a way to specify
the dynamics (a state machine, a markov process, a differential equation, and
the list is extensible at will) and then by specifying the dynamics according to
the selected way (the states and transitions for a state machine, the states and
transition matrix for a markov process, etc.). The way to specify the dynamics
shall be called the state (although it does not only defines the state but also
how the state changes) and the associated specification the state specification.
The state can be specified directly when creating a new category as explained in
the section 4.2.1. Otherwise, it is enough to open the category editor as shown
in figure 5.1 and to select the behavior panel.

The behavior panel is itself made of four subpanels:

• the probe panel is used to define what can be observed from the individu-
als. It is used for displaying what happens during the simulation or saving
it to any media for further processing (statistics, etc.). The probes shall
be described in the section 5.2.4.

• the incoming influences panel is used to specify the events the individuals
are able to react to. They shall be explained in the sections 5.2.1 and
5.2.3.

• the outgoing influences panel is used to specify the events the individuals
are producing. They shall also be explained in the sections 5.2.1 and 5.2.3.

• the behavior panel (sorry, it has the same name as the upper level panel)
is used to specify the state and its specification. In the figure 5.1, one can
see the drop-down menu in the upper part to select the state (i.e. the way
one wants to specify the behavior) and the associated specification. Here,
the chosen way to specify the behavior is through a state chart as specified
in UML called StateChartState. Therefore a corresponding state chart
editor is shown.

In addition, at the top, there is the specification of the multiplier between

24

CHAPTER 5. THE DYNAMICS 25

Figure 5.1: The behavior panel of the category.

the global time grain and the local time grain1. Further explanation on the
representation of time in Mimosa can be found in section 5.2.5.

To understand the offered possibilities and, more importantly, the behavior
one can expect from these various states and state specifications, it is necessary
to go down to the ground and expose a little bit of the underlying machinery.
This is done in the following section. Thereafter, we shall introduce some already
existing states and their corresponding specifications.

5.2 The operational semantics

Globally, the underlying machinery is nothing but a discrete event simulation
system. The running model is made of entities sending time stamped events
which are delivered to their target entities at the specified dates, possibly gener-
ating new time stamped events and so on. The scheduler is in charge of ordering
the events by their time stamps and to execute them in order. The only thing to
specify is how each entity behaves, i.e. generates new time stamped events and
reacts to incoming events. It is the purpose of the next section. In the following
the events are called influences for obscure (another name for historical) reasons
[8].

5.2.1 The model

The underlying simulation semantics is based on an extension of //-DEVS (see
[12]) called M-DEVS as a shorthand for Mimosa-DEVS. Therefore, one must

1The grain is the smallest difference between any two time measure which can be distin-

guished.

CHAPTER 5. THE DYNAMICS 26

understand how M-DEVS works in order to master the behavior of the models
although most details are assumed to be hidden by higher level of abstractions
as suggested in the introduction of this chapter.

A M-DEVS entity is a tuple:

< X, Y, O, init, δext, δint, δlog, δcon, λext, λint, λlog, λstr , τ >

with an implicit state space on which no hypothesis is made, where:

X: is a set of incoming influences;

Y : is a set of outgoing influences;

O: is a set of output ports the elements of Y are sent to;

init: is a function to set the model in its initial state;

δext: is a function to specify the reaction to a set of incoming influences (all the
influences occurring at the same time are given simultaneously);

δint: is a function to specify the internal change (when it occurs is specified by
ta and what occurs is specified by λint);

δcon: is a function to specify the reaction to the occurrence simultaneously of
an internal change and the arrival of a set of incoming influences;

δlog: is a function to specify the reaction to a set of logical influences, possibly
producing further logical influences;

λext: is a function to provide the outgoing influences (when it is called is also
specified by ta);

λint: is a function to provide the internal influence to occur after a duration of
ta;

λlog: is a function to provide the logical influences to occur after each transtion;

λstr: is a function to provide the structural changes to occur also after each
transtion;

τ : is a function which provides the duration until the next internal influence;

For all functions but init, the duration since the last cycle (see below) is given
as an argument. Therefore the internal logic of any atomic model is based on
durations.

Although complicated at the first sight, the logics is very simple:

• λext and δext are the functions to issue the events (λext) and to handle
them (δext). It corresponds straight away to the intuitive event based
mechanism as explained in introduction. The time of the events is when
τ elapsed since the last transition;

• λint, τ and δint are the functions for specifying the spontaneous behavior,
i.e. what the “box” does (λint), when (τ) and how (δint);

• λlog and δlog is used to propagate information (λlog) and make computa-
tions based on this information (δlog);

CHAPTER 5. THE DYNAMICS 27

• λstr specifies the possible modifications in the interconnection topology
(see below).

Mimosa implements a unique so-called M-DEVS bus which is a set of M-
DEVS entities with interconnected ports. More precisely, a M-DEVS bus is a
pair < E, links > where:

E: is a set of M-DEVS entities;

links: is a mapping from M × O into E specifying a mutable interconnection
topology;

For simulation, the M-DEVS bus runs in cycles. Each cycle corresponds to
a certain date where everything happening at that date is propagated through
out all the M-DEVS atomic models. At each cycle:

1. each model is asked for its ta. Let minta be the smallest value;

2. the global time is advanced by minta. Let:

• C be the set of models with the same minta;

• C′ ∈ C be the set of models producing outputs;

3. λext is called for each model in C′ and the outgoing influences are gathered
and their destinations are identified using links;

4. for each model m in C:

• if m has simultaneous incoming influences and an internal change,
δcon is called;

• if m has only an internal change, δint is called;

• if m has only incoming influences, δext is called;

and all the outgoing logical influences are gathered;

5. all the logical influences are dispatched via links by calling λlog and δlog

until there is no logical influences left (be careful about possible loops
which are not detected).

6. all the structural changes are dispatched by calling λstr .

For each individual, MIMOSA shall generate a corresponding entity which
shall be initialized from the list of its attribute values in a state specific way.

5.2.2 The ports

A port provides a way to connect M-DEVS entities together. In Mimosa we
distinguish port descriptions and ports.

A port description is defined by a name and an arity:

• a name is simply a String. This name must be unique within a category.

CHAPTER 5. THE DYNAMICS 28

• an arity defines the number of indexes which can be given to specify a port.
When an entity has to address a large number of other entities, rather
than providing a range of distinct ports, it is easier to use a single name
with one or more indices. Having more than one index allows to induce a
topology on the addressed entities. For example, an entity defining a two
dimensional cellular automata can address it cells with two indices, hence
with an arity 2 port description.

Externally, the syntax of a port description is <name>[’(’<int>’)’]. The arity
is optional if it is 0.

A port is an instance of a port description. When the arity is 0, there is
only one possible instance. When the arity is 1 or more, any number of ports
are possible, distinguished by the value of their indices. Externally, the syntax
of a port is <name>[’(’<int>{’,’<int>}’)’]. The indices are optional if the
arity is 0.

If the reader perceives some relationship between a port and a link (and
between a port description and a semantic relation), it is right. We are here
using the vocabulary used in the modeling and simulation community which
is unrelated to the vocabulary used in the ontology community. As for indi-
viduals generating M-DEVS entities, the links are used to produce the initial
interconnection topology.

5.2.3 The influences

An influence is an event which is transmitted between two M-DEVS entities. In
Mimosa we also distinguish between influence types and influences as instances
of influence types.

The influence types are just names but must be declared. These names
are unique in a given conceptual model (or ontology). This type level is not
really useful at this stage but provides a provision for further typing (like the
declaration of the arguments) to be used for connectivity with other buses like
HLA or CORBA where the type of transmitted information has to be declared.

The influences are instances of influence types. For the time being they have:

• a name which is the name of the corresponding influence type;

• a content which is either empty or a collection of elements.

For ensuring communication between entities possibly written in various lan-
guages, and in particular, in various scripting languages, a standard and limited
format is imposed for the content. A content is necessarily a collection (at the
implementation level an instance of Java ArrayList) of:

• collections, allowing recursive structures;

• simple types: shorts, integers, longs, floats, doubles, booleans and strings
(respectively implemented internally in Java as instances of Short, Integer,
Long, Float, Double, Boolean and String).

No other kind of data can be send through the influences.

CHAPTER 5. THE DYNAMICS 29

5.2.4 The probes

It is possible to associate to any individual (therefore to any M-DEVS entity), a
visualization window for displaying any information evolving over time (e.g. the
entity state changes). Having no hypothesis on the nature of the entity states,
there is NO automatic synchronization between the model and its visualization.
To perform this visualization, one has to declare a list of probes given by their
name, type (only simple types are allowed) and cardinality. When specifying
the behavior, i.e. the various transition functions, the user has to explicitly
send probe values whenever he wants to signal a change. The probe value is
propagated to the visualization window which can perform whatever one wants:
drawing or saving the data for further processing.

5.2.5 The time

The underlying time for the whole system is considered discrete (regardless of
the grain which could be as fine as picoseconds) and therefore mapped on natural
numbers. As already mentioned, an M-DEVS entity only considers durations.
In addition, these durations can only be expressed as integers.

When simulating an M-DEVS entity, a local time is deployed. The creation
of an M-DEVS atomic model either at the start of the simulation or during
it, defines the origin of the local time (0). All the durations are added up,
generating a local date as an integer. In particular, this local time is used to
compute the durations transmitted to the M-DEVS entity.

A step further, the M-DEVS bus defines a global time. The origin of the
global time (0) is the start of the simulation (initialization always occurs at the
global time 0). The M-DEVS entity local times are mapped to the global time
in two ways:

• the origin of the local time is situated in the global time at the (global)
time of creation of the M-DEVS entity;

• the ratio between the local time grain and the global time grain is given.
The global time grain is assumed to be the smallest possible grain able
to take into account the grain of any other atomic model as an integral
multiplier of the global grain.

Still at this stage, the time is a natural number without dimension (without
unit). The correspondence between this time and the real time where the origin
of simulation corresponds to a real date and the global grain has a unit (pi-
cosecond, hour or week) shall be specified externally. It is foreseen to be able to
declare this information to the scheduler and use this reference to define in an
easier way the time units of the entities. It is not yet completely implemented
at this stage.

In summary, any M-DEVS entity has

• a grain (the smallest undistinguishable time difference) defined implicitly
by having durations expressed with integers and explicitly by a multiplier
with the global grain;

• an origin defined implicitly by having the entity life starting at 0 and
explicitly by a position of this origin with respect to the global time.

CHAPTER 5. THE DYNAMICS 30

5.3 The behavior specification

In order to describe the behavior of an entity, the user must expect to have
to specify each of the mentioned function for proper functioning of the model,
hence the importance to understand the underlying operational semantics as
described before. However, higher level specifications can be made as various
kind of state machines, petri nets, directly specified differential equations with
various means of integration as long as there execution can be mapped in the
previously described functions. These extensions can be added at will to the
system in a way which is described in the programmer’s manual.

When editing a category behavior, a number of panes are dedicated for
specifying the behavior (see the figure 5.1):

• the incoming influences to declare the list of incoming influences;

• the outgoing influences to declare the list of outgoing influences;

• the probes to declare which information is dynamically provided during
entity simulation;

• the behavior pane to describe the behavior itself. At the top of this pane,
there is drop down menu of available ways of specifying the behavior.

The available means for specifying the behavior are as follows:

• by writing a piece of Java program and declare it to the Mimosa system
to make it available in the user interface;

• by specifying the behavior of each of the mentioned function using a script-
ing language. Several scripting languages are available: java, scheme, jess
(unavailable due to a need for a license), python and prolog (not fully
tested yet);

• with a state/transition diagram where the conditions and actions can be
specified in one of the scripting languages mentioned before;

• with any higher level mean of specification as markov processes, etc. de-
pending on the availability of the corresponding plug-in.

These various technics shall be described in turn in the next sections.

5.3.1 Programmatic specification

This section is more appropriate for the programmer’s manual but is included
here to introduce the basics which are made available in the other ways of spec-
ifying the model behavior. With your favorite Java IDE (for example Eclipse
(http://www.eclipse.org)), create a new project with a package (let’s call it ex-
ample) in which you have to create a class as a subclass of mimosa.scheduler.NativeState.
The result is a file with the following content:

package example;

import mimosa.scheduler.NativeState;

public class MyExample extends NativeState {

}

CHAPTER 5. THE DYNAMICS 31

NativeState defines nine (10) methods doing nothing by default:

• public void doInstanceInitialize() throws EntityException;: which
is called only once when the entity is created (for example in the model
editor). Use it to create the initial content of state variables.

• public void doInitialize() throws EntityException;: equivalent to
the init function. It is called each time the model is initialized by the
scheduler. As a principle, each time a model is initialized, exactly the
same initial state should result. If you are using random generators, try
to reinitialize it with the same seed.

• public void doExternalTransition() throws EntityException;: equiv-
alent to δext.

• public void doInternalTransition() throws EntityException;: equiv-
alent to δint.

• public void doLogicalTransition() throws EntityException;: equiv-
alent to δlog.

• public void doConfluentTransition() throws EntityException;: equiv-
alent to δcon.

• public void doGetExternal() throws EntityException;: equivalent
to λext.

• public void doGetInternal() throws EntityException;: equivalent
to τ and λint together.

• public void doGetLogical() throws EntityException;: equivalent to
λlog.

• public void doGetStructural() throws EntityException;: equiva-
lent to λstr.

If something is going wrong, just throw an EntityException with the entity
and a message as parameters. The exception will be taken into account by
the architecture in an appropriate way. Do not forget to catch any possible
exception and raise an EntityException accordingly for securing the model
execution. Because they are predefined for doing nothing, you can only define
the methods you actually need.

BE CAREFULL, until a next release where these methods shall proba-
bly disappear, do not use the methods doGetExternal, doGetLogical and
doGetStructural unless you perfectly know what you are doing. Sending the
corresponding influences anywhere else is enough in most cases.

When calling each method, this variable is defined and appropriately bound
in the context:

time: contains the duration since the previous transition (remember that these
methods are called in a given cycle and the M-DEVS bus advance time
from a cycle to another);

The following methods are defined for accessing the incoming influences:

CHAPTER 5. THE DYNAMICS 32

• getAllInfluences(): to get the list of incoming influences in any order;

• getInfluence(String name): to get the list of incoming influences with
the given name. It is used to control the order in which to handle the
incoming influences;

• getInternalInfluence(): to get the incoming internal influence.

To program each functionality, a number of methods are defined by cate-
gories:

• to manipulate random generators2:

– public Random newRandom();

– public Random newRandom(long seed);

– public boolean newBoolean(Random rand);

– public int newInt(Random rand,int max);

– public double newDouble(Random rand);

• to easily create ports and port references:

– public Port port(String name,int args...);

– public Port portRef(Port port...);

• to manipulate the influence content:

– Object contentOf(Influence influence): which returns either
null if there is no content or a Collection of objects (as defined
in 5.2.3).

– List list(Object... objects): to create a list of objects as a
content or sub-content.

– Object object(T i): where T is one of the Java simple types (short,
int, etc.) to encapsulate them within the corresponding class instance
(Short, Integer, etc.).

– T toT(Object o): where T is one of the Java simple types (short,
int, etc.) to unbox them from the corresponding class instance (Short,
Integer, etc.).

• to get the initial value of a parameter:

– public Object getParameter(String name).

• to post an influence at a given port:

– void sendExternal(String portName,String influenceTypeName),

– void sendExternal(Port portName,String influenceTypeName),

– void sendExternal(String portName,String influenceTypeName,Object

args),

2it is necessary to hide which kind of generator is used. Currently the Mersenne Twister

random generator is known as one of the best and provided in Mimosa.

CHAPTER 5. THE DYNAMICS 33

– void sendExternal(Port portName,String influenceTypeName,Object

args).

– void sendLogical(String portName,String influenceTypeName),

– void sendLogical(Port portName,String influenceTypeName),

– void sendLogical(String portName,String influenceTypeName,Object

args),

– void sendLogical(Port portName,String influenceTypeName,Object

args).

– void sendInternal(int duration,String influenceTypeName),

– void sendInternal(int duration,String influenceTypeName,Object

args),

– void reply(LogicalInfluence influence,String influenceTypeName),

These methods can be called in most methods.

• to signal a state change by a probe:

– public void sendProbe(String name,Object args...).

• to destroy itself:

– public void die().

It removes the entity from the scheduler, removes of the link references as
well as all the scheduled incoming influences.

In addition, a number of methods are defined to dynamically create and link
entities during the simulation:

• void addPort(PortReference name, String categoryName, boolean

traced, Map<String,Object> parameters): creates an entity as an in-
stance of the given category, whether it is traced or not and the map of
attribute values;

• void addPort(String name, String categoryName, boolean traced,

Map<String,Object> parameters): same as above when there is a sim-
ple syntax for the port reference;

• void linkPort(PortReference portRef1, PortReference portRef2):
links the port reference to the entities referenced by the second port ref-
erence, creating new links;

• void linkPort(String portRef1, PortReference portRef2): same as
above;

• void linkPort(PortReference portRef1, String portRef2): same as
above;

• void linkPort(String portRef1, String portRef2): same as above;

• void removePort(PortReference portRef): removes the entities from
the given port, without destroying the referenced entities (they kill them-
selves using die).

CHAPTER 5. THE DYNAMICS 34

• void removePort(PortReference portRef): same as above.

To simplify the specification of the parameters in addPort, two additional meth-
ods are provided:

• public Pair pair(String name,Object args...): for creating a pair
(parameter name, value);

• public Map<String,Object> parameters(Pair args...): for creating
the adequate map from the pairs.

For example, if we want to program the behavior of a clock which sends a
tick influence to its clocked port at interval time, we could have the following
code:

package example;

import mimosa.scheduler.NativeState;

public class MyClock extends NativeState {

private int interval;

/**

* @see mimosa.scheduler.NativeState#doInitialize()

*/

@Override

public void doInitialize() throws EntityException {

interval = getParameter("interval");

}

/**

* @see mimosa.scheduler.NativeState#doGetInternal()

*/

@Override

public void doGetInternal() throws EntityException {

sendInternal(interval,"tick");

}

/**

* @see mimosa.scheduler.NativeState#doGetExternal()

*/

@Override

public void doGetExternal() throws EntityException {

sendExternal("clocked","tick");

}

}

in which we declare a variable to cache the parameter value (the interval between
two ticks), the function to get the parameter value, the ta function which signals
an output after the given interval and λext where a single influence is sent to
the port.

Of course, it is not enough to write the code. This code has to be known
from Mimosa. In order to do that, you have to create an XML file in which
Mimosa can read the following declarations:

CHAPTER 5. THE DYNAMICS 35

<?xml version="1.0"?>

<mimosamodule name="Example" package="example">

<behaviour notion="EntityType" implementation="MyClock">

<parameters>

<parameter name="interval" cardinality="1" type="java.lang.Integer"/>

</parameters>

<outInfluences>

<influenceType name="tick"/>

</outInfluences>

<outPorts>

<port name="clocked" entityType="EntityType"/>

</outPorts>

</behaviour>

</mimosamodule>

This XML file contains everything you would have declared through the user
interface and additionnaly defines through the package and implementation

attributes where to find the corresponding class.
You then have to create a folder called example, to put the .jar containing

the complied class, to define a file called example-config.xml and to put the
whole folder in the plugins subdirectory of Mimosa. By trying this example, the
behavior MyClock will appear in the list of available behaviors.

In general, any new behavior (or way of defining behaviors) can be added
to Mimosa by putting in the plugins directory a folder called xxx with a file
called xxx-config.xml in it with the related XML content and as many .jar

as necessary. Further details as well as the complete syntax of the XML file
shall hopefully be presented in the programmer’s manual.

5.3.2 Scripted specification

The previous procedure being relatively heavy but necessary if one wants either
an efficient piece of code or to use Java to encapsulate a legacy simulation
software, we provide the same functionality by using scripting languages directly
through the user interface. The basic principles are the same and we are using
the same names for the variables and functions or equivalent for consistency.
For using this functionality, you have to select LanguageState in the drop down
menu of the behavior pane. Immediately below, you will have another drop
down menu to select the desired scripting language.

In a model, any combination of scripting languages can be used because
all the specific data structures are translated into a standard Java format and
back to the specific data structures. So feel free to use any one you find most
appropriate for your usage. Of course, it requires to be multi-lingual!

Java scripting

Java scripting makes available the full Java language by using the bean shell
library (see [5] for getting the related documentation). In particular, all the
methods defined in the section 5.3.1 are readily available. However to call them,
a new variable is defined: self. The methods can be called by addressing them
to self. For example, for the λext function, the code is:

CHAPTER 5. THE DYNAMICS 36

self.sendExternal("clocked","tick");

There is one drawback in using Java scripting: all the Java types have to
be prefixed explicitly by the package name (for example java.lang.Integer

instead of simply Integer).

Scheme scripting

The Scheme language is a kind of pure functional language (based on lambda-
calculus). The facilities for manipulating symbols and lists make it particularly
useful for qualitative and symbolic manipulations, much less for numerical com-
putations. We are using the Kawa library ([6]: fast and complete but with
scoping problems) as well as JScheme ([3]: limited and slow but semantically
consistent) for providing Scheme. The documentation for the language itself
can be found on the corresponding web site. The appendix A provides a short
reference to the Scheme language as well as the list of provided functions for
calling Mimosa.

Jess scripting

Jess is a rule base language with a forward chaining semantics (see [2]). The
behavior is described as a single set of rules of the form <conditions> =>

<actions>. Whenever the conditions are met, the corresponding rule is fired
and the actions executed. In our case, each M-DEVS function introduces the
time, the influences and the function name in the fact based and the rules are
fired accordingly until no rule is applicable. The example of the clock looks like
this:

(defrule initialize1

(initialize)

=>

(make (interval (getParameter "interval"))))

(defrule getExternal

(getExternal)

=>

(sendExternal "clocked" "tick"))

(defrule getInternal

(getInternal)

(interval $value)

=>

(sendInternal $value "tick"))

It is no longer maintained because Jess requires a licence which is free for
academics but costly for others. The library is not provided with the distribution
for that reason but can be downloaded from [2].

Python scripting

The implementation uses the Jython library whose documentation can be found
on [7]. We are using the possibility in this version of Python to call Java objects
with the standard python syntax. Accordingly, the variable self is defined as
well as all the variables as in Java and the corresponding methods can be called
directly. So, there is not much difference with Java.

CHAPTER 5. THE DYNAMICS 37

Prolog scripting

Prolog ia a rule base language with a backward chaining semantics. The behav-
ior is described as a single set of rules of the form <conclusion> :- <conditions>.
The program is run by asking for a conclusion and the program tries to find
the possible proofs. As in Jess, each M-DEVS function introduces the time,
the influences and the function name in the fact based and the rules are fired
accordingly until no rule is applicable. The run predicate must be defined. The
example of the clock looks like this:

run :- initialize,

X is getParameter(interval),

asserta(interval(X)).

run :- getExternal,

sendExternal(clocked,tick).

run :- getInternal,

interval(X),

sendInternal(X,tick).

Implemented but not yet fully tested. The implementation uses the tuProlog
library whose documentation can be found on [4].

Smalltalk scripting

Implemented but not yet fully tested. The implementation uses Athena (see the
we site [1]) which is a lightweight implementation of Smalltalk for embedded
applications. The resulting scripts look awfull so it would probably not be
explored further.

5.3.3 State charts

Coming soon.

5.3.4 Further extensions

This level being extensible at will by adding further meta-ontologies, this chapter
shall only describe some of them as provided in the first versions of Mimosa.
How to define new meta-ontologies is described in the programmer’s manual. In
this chapter, we shall introduce the meta-ontologies for object, space, cellular
automata and multi-agent systems.

The objects

Most categories have very simple behavior corresponding roughly to what is
available in objet-oriented programming. For the categories, it is not necessary
to provide the full M-DEVS functionality (although object-orientedness can be
mapped in a subpart of M-DEVS). We have provided two versions corresponding
to most needs:

• StaticObject is used when the only functionality is around state variable
values being set and get;

CHAPTER 5. THE DYNAMICS 38

• SimpleObject is an extension of StaticObjectwhere external and logical
influences are considered as method calls: the external influences when
the SimpleObject will change state in response, and the logical influences
when only information updates and requests have to be handled.

StaticObject contains a set of state variables to choose among the at-
tributes3. The following incoming influences are expected:

• setState name value: as an external influence to change the value of
one of the variables;

• getState name: as a logical influence to ask for the value of one of the
variables.

The following outgoing influences are issued in response to the getState influ-
ence:

• state name value: as a logical influence to communicate the value of the
requested state variable;

• undefinedState name: as a logical influence to communicate the state
variable has no value.

SimpleObject has the same semantics as StaticObject and as such pro-
vides to the same incoming and outgoing influences. In addition to defining the
state variables, the modeler can add as many additional incoming and outgoing
influences as he wants. SimpleObject allows to associate a piece of code to
execute to each incoming influence. In figure 5.2, the upper part shows on the
left the list of defined attributes and on the right the list of attributes which
have been chosen as state variables. In the bottom part, one can see the chosen
scripting language, the chosen incoming influence and the associated code. The
arguments of the influence if any are stored in the variable arguments as a list.

The spaces

Coming soon.

The cellular automata

Coming soon.

The multi-agent systems

Coming soon.

3It is assumed that a state variables always has an initial value to be set from the corre-

sponding attribute.

CHAPTER 5. THE DYNAMICS 39

Figure 5.2: The behavior panel of a simple object.

Chapter 6

The concrete model editor

At this stage, the conceptual model has been completely defined both with
its structural part (the ontology properly speaking) with the categories, their
attributes and their relations, and its dynamical part by specifying in a way
or another the dynamics of the individuals specified by each category. The
concrete model editor shall use these definitions for providing the user with
the possibility to describe as many concrete models as he wants as a set of
individuals, attribute values and links. These individuals, attribute values and
links are nothing but the instances of the corresponding categories, attribute
descriptions and relations. Their edition shall be described in the sections 6.1
and 6.2.

In addition, the user must specify what to do with the probes (see 5.2.4). As a
reminder, the probes are specified in the dynamical description of the categories
and must be sent to signal a state change of interest, using sendProbe. The
concrete model editor provides the mean to specify the outputs where one wants
to send these probes. These outputs can be visual as graphs, graphs, grids, etc.
or can be files, databases or even channels to various tools running in parallel
like R, Excel, etc.. This part shall be described in the section 6.3.

Finally, the user can visually specify a control panel to be used during the
simulation which includes:

• the visual outputs;

• the widgets to parameterize the model.

This latter part shall be described in section 6.4.
The concrete model editor is made of two panels:

• on the left pane, there is a list of existing models. These models can be
created or removed by double-clicking in this pane.

• on the right pane, there are two graph panels:

– the first one is a graph panel very similar to the one used for creating
conceptual models. The top of the panel is occupied by a drop down
menu to select the conceptual model from which one wants to instan-
tiate the individuals and links. A concrete model can be drawn from
several conceptual models combining various sources of knowledge.

40

CHAPTER 6. THE CONCRETE MODEL EDITOR 41

Figure 6.1: The buttons of the model editor.

– the second one is used to visually draw the control panel for the
simulation of the corresponding model.

Apart from the conceptual model drop down menu, the starting point is the
tool bar in the upper part of the first graph panel as illustrated in the figure 6.1
where six buttons appear:

• the first one is the grabber for selecting an object (individual or links) in
the drawing and is always selected by default;

• the second is the note object to write down documentary comments to
associate to individuals;

• the third is the link to associate a comment with an individual;

• the fourth is for creating or selecting individuals to draw;

• the fifth one is the link;

• the sixth is used for creating an output;

• the seventh is a link between an individual and an output to specify where
to send the probes;

• finally, the sixth is the button to access the push down menu for manipu-
lating the grid behavior as already described in 2.4.

6.1 Individual edition

6.1.1 Drawing an individual

To draw an individual in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the figure 6.2.

This dialog is composed of two parts:

• the upper part lists all the individuals available in the selected model.
Selecting one of these and typing either return or pushing the Existing

button shall draw the corresponding individual at the selected place.

• the down part is used to create a new individual with two fields:

– a drop down menu from which to select the category one wants to
create an individual from;

– a name field to enter a name which is optional but can be used for
documentation purpose.

CHAPTER 6. THE CONCRETE MODEL EDITOR 42

Figure 6.2: The creation dialog for an individual.

Figure 6.3: The individual graphical form.

A rectangle is drawn as illustrated in the figure 6.3 with a name which
composed of the optional name of the individual, a semi-colon and the category
name which is itself composed of the ontology name and the category name.

6.1.2 Editing an individual

An individual can be edited by double-clicking on it, or by selecting it and
selecting Edit... from the Edit menu, or by right-clicking on it and selecting
Edit... in the popup menu. The individual editor dialog (6.4) shows up with
the following parts:

• the name of the category, which cannot be changed;

• the name of the individual which can be changed at will;

• a “trace” check box to specify whether the individual has to be traced. This
allows to trace the M-DEVS function calls specifically for one individual;

• a panel where one can specify the attribute values.

Figure 6.4: The individual editor with the attribute panel.

CHAPTER 6. THE CONCRETE MODEL EDITOR 43

Figure 6.5: The creation dialog for a link.

6.1.3 Deleting an individual

An individual can be deleted by selecting it and selecting Remove... from the
Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the individual must be removed from the model:

• if yes, the individual is removed both from the drawing and the list of
existing individuals defined in the model;

• otherwise, only the drawing is removed but the individual remains as an
existing individual.

6.2 Link edition

6.2.1 Drawing a link

To draw a link in a given place it is enough to click on the corresponding button
and then from an individual (called the source individual) to another one (called
the target individual), or to right click at the desired place to show up the same
toolbar as a popu menu. A new dialog is opened as illustrated in the figure 6.5.

This dialog is composed of the list of available relations between the two
selected individuals as defined in the corresponding category of the source in-
dividual. Depending on the arity of the relation (i.e. the number of indices to
fully specify the relation), as many text fields are displayed underneath to enter
the indices values. In the figure 6.5, the relation is of arity 1, so only one index
must be specified.

The arrow from the source individual to the target individual is annotated
by the relation name as shown in the figure 6.6. The index values are written
between parenthesis.

6.2.2 Deleting a link

A link can be deleted by selecting it and selecting Remove... from the Edit

menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the link must be removed from the model:

• if yes, the link is removed both from the drawing and the list of links
defined for the model;

• otherwise, only the drawing is removed but the link remains unchanged.

CHAPTER 6. THE CONCRETE MODEL EDITOR 44

Figure 6.6: The example of a link.

Figure 6.7: A concrete model with an output specification.

6.3 Output specification

The figure 6.7 shows a concrete model with three individuals and one output.
The arrows are connecting the individuals to an output which is, in this case,
a 2D grid view, specifying that the corresponding probes must be sent to that
output.

6.3.1 Drawing an output

To draw an output in a given place it is enough to click on the corresponding
button and then at the desired place, or to right click at the desired place to
show up the same toolbar as a popu menu. A new dialog is opened as illustrated
in the figure 6.8.

This dialog is composed of two parts:

CHAPTER 6. THE CONCRETE MODEL EDITOR 45

Figure 6.8: The creation dialog for an output.

Figure 6.9: The output graphical form.

• the upper part lists all the outputs available in the selected model. Select-
ing one of these and typing either return or pushing the Existing button
shall draw the corresponding output at the selected place.

• the down part is used to create a new output with a drop down menu from
which to select the kind of output one wants to create.

An ellipse is drawn as illustrated in the figure 6.9 with a name which com-
posed of the kind of chosen output and an automatically generated name be-
tween parenthesis to uniquely identify this output for further manipulation.

6.3.2 Editing an output

An output can be edited by double-clicking on it, or by selecting it and selecting
Edit... from the Edit menu, or by right-clicking on it and selecting Edit...

in the popup menu. The output editor dialog (6.10) shows up with two parts:

• a drop down menu to choose the kind of output;

• a panel which depends entirely on the kind of output. In the figure 6.10,
it is an editor to attribute colors to various probe values for visualization.
If the output is directed to a file, the file should be defined, etc.

The available outputs depend on the behavior associated to the correspond-
ing individual and are therefore described with the possible dynamical specifi-
cations. However, a number of general purpose outputs are provided and shall
be described in the following.

ProbeView

Coming soon.

CHAPTER 6. THE CONCRETE MODEL EDITOR 46

Figure 6.10: The output editor with an attribute panel.

ProbeFileOutput

Coming soon.

PlotView

Coming soon.

GraphView

Coming soon.

6.3.3 Deleting an output

An output can be deleted by selecting it and selecting Remove... from the Edit
menu, or by right-clicking on it and selecting Remove... in the popup menu.
It is asked whether the output must be removed from the model:

• if yes, the output is removed both from the drawing and the list of existing
outputs defined in the model;

• otherwise, only the drawing is removed but the output remains as an
existing output.

6.3.4 Drawing an output edge

To draw an output edge in a given place it is enough to click on the corresponding
button and then from an individual (called the source individual) to an output
(called the target output), or to right click at the desired place to show up the
same toolbar as a popu menu. A new dialog is opened as illustrated in the figure
6.11.

This dialog is composed of the list of available output edges between the
individual and the output.

6.3.5 Deleting an output edge

An output edge can be deleted by selecting it and selecting Remove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output edge must be removed from the model:

CHAPTER 6. THE CONCRETE MODEL EDITOR 47

Figure 6.11: The creation dialog for an output edge.

Figure 6.12: The control panel toolbar.

• if yes, the output edge is removed both from the drawing and the list of
output edges defined for the model;

• otherwise, only the drawing is removed but the output edge remains un-
changed.

6.4 Control panel definition

The control panel editor is used to position the various control panel elements
on the control panel. The toolbar is shown in the figure 6.12 where, apart from
the usual buttons, we have two main buttons:

• the green button is used to add an output view to the control panel;

• the yellow button is used to add a parameter editor to the control panel.

The figure 6.13 shows a control panel with two parameter editors (yellow)
and one output view (green).

6.4.1 Drawing an output view

To draw an output view in a given place it is enough to click on the corresponding
button and then at the place where to put the output view, or to right click at
the desired place to show up the same toolbar as a popu menu. A new dialog
is opened as illustrated in the figure 6.14.

This dialog is composed of two parts:

• the upper part lists all the output views available in the selected control
panel. Selecting one of these and typing either return or pushing the
Existing button shall draw the corresponding output view at the selected
place.

• the down part is used to create a new output view with a drop down menu
from which to select one of the output view defined in the concrete model
graph panel (see 6.3).

CHAPTER 6. THE CONCRETE MODEL EDITOR 48

Figure 6.13: The control panel view.

Figure 6.14: The creation dialog for an output view.

CHAPTER 6. THE CONCRETE MODEL EDITOR 49

Figure 6.15: The creation dialog for a parameter editor.

6.4.2 Deleting an output view

An output view can be deleted by selecting it and selecting Remove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup
menu. It is asked whether the output view must be removed from the control
panel:

• if yes, the output view is removed both from the drawing and the list of
output views defined for the control panel;

• otherwise, only the drawing is removed but the output view remains un-
changed.

6.4.3 Drawing a parameter editor

To draw a parameter editor in a given place it is enough to click on the corre-
sponding button and then at the place where to put the parameter editor or to
right click at the desired place to show up the same toolbar as a popu menu. A
new dialog is opened as illustrated in the figure 6.11.

This dialog is composed of two parts:

• the upper part lists all the parameter editors available in the selected
control panel. Selecting one of these and typing either return or pushing
the Existing button shall draw the corresponding parameter editor at
the selected place.

• the down part is used to create a new parameter editor with two drop
down menus:

– the first one is for selecting one of the individuals created in the
concrete model panel (see 6.1.1);

– the second one is for selecting one of the attribute to edit of the
individual.

6.4.4 Deleting a parameter editor

A parameter editor can be deleted by selecting it and selecting Remove... from
the Edit menu, or by right-clicking on it and selecting Remove... in the popup

CHAPTER 6. THE CONCRETE MODEL EDITOR 50

menu. It is asked whether the parameter editor must be removed from the
model:

• if yes, the parameter editor is removed both from the drawing and the list
of parameter editors defined for the model;

• otherwise, only the drawing is removed but the parameter editor remains
unchanged.

Chapter 7

Some examples

7.1 The rolling ball example

As an example, we shall model a simple system composed of one rolling ball and
a kicker. This example allows the illustration of a combination of continuous
and discrete time:

• the rolling ball is submitted to uniform movement described by the fol-
lowing equations:

x(t) = x0 + vx × t; y(t) = y0 + vy × t

• at random time, the kicker computes a random two-dimensional vector
< kx, ky > which is sent to the ball to change its trajectory in the following
way:

vx = vx + kx; vy = vy + ky

7.1.1 Defining the conceptual model

The conceptual model will be composed of two categories: RollingBall and
Kicker. The RollingBall is characterized by four attributes: two for the initial
position (x0 and y0 corresponding to x0 and y0) and two for the speed (vx and
vy corresponding to vx and vy). The Kicker is characterized by one attribute:
the seed of its random generator used for the time of kicking the ball and the
generation of the random vector1.

If we want to visualize the position of the ball, the event-based nature of the
simulation will only be able to provide state changes when the ball is kicked.
To see the ball rolling between two successive kicks, we have to sample the
trajectory. In order to do that, a third category is added to the model to
sample the trajectory by asking at each fixed time step to the ball its position.
The resulting ontology in shown in figure 7.1.

In addition, you have the definition of three relations:

• kicked which a relation of Kicker to send a kick to a RollingBall. Note
that a Kicker can kick simultaneously any number of balls.

1To put the seed as a parameter is recommended if one wants to control the outcome of

the simulation, i.e. to produce exactly the same result for each simulation.

51

CHAPTER 7. SOME EXAMPLES 52

Figure 7.1: The conceptual model for a kicked and observed rolling ball.

Figure 7.2: The conceptual model for a rolling ball with the attribute panel.

• observer which is a port of RollingBall to send its position to an ob-
server (and it can have as many observers as it wants).

• observed which is a port of Observer to send a request for position (it
will always be a logical influence, of course).

The parameters can be edited (added, changed or removed) through the
category editor as shown in the figure 7.2.

The relations (i.e. the definition of the relation name, cardinality and type)
can be either drawn through the graphical editor or entered in the category
editor dialog as in figure 7.3. If the relation are defined by the category editor,
they will not show up in the graphical editor. They can be visualized by drawing
an arc and specifying an existing link as shown in figure 7.4.

At that stage, the structure of the conceptual model (i.e. the ontology) is
entirely defined: the categories, attributes and relations.

7.2 Defining the dynamics

For defining the behavior, you have to define:

• the incoming and outgoing influences;

CHAPTER 7. SOME EXAMPLES 53

Figure 7.3: The rolling ball category with the relations panel.

Figure 7.4: Definition of an arc from an existing relation definition

CHAPTER 7. SOME EXAMPLES 54

Figure 7.5: The rolling ball category with the probes panel

• the probes;

• the M-DEVS functions.

We assume that RollingBall receives kicks and observation requests and sends
positions, Kicker sends kicks and the Observer sends observation requests and
receives positions. The checking of the consistency between what is sent or
received is currently very loose but can be reinforced by selecting the “verify”
check-bon in the scheduler. In a future release the possibility to check for
model consistency when defining the conceptual model will be enforced (at least
optionally).

We shall define two identical probes: one for the RollingBall to signal the
state change (new x0, y0, vx and vy, see figure 7.5) and one for the Observer

for the ball position, each time it receives the actual coordinates.
These declarative parts of the dynamics being made, we have to focus on

specifying each of the function of the corresponding M-DEVS model. The figure
7.6 shows how to define the initialization of the rolling ball. In the shown panel,
the LanguageState behavior has been selected, which allows to specify the
behavior with script languages. In this case, the Java scripting language has
been selected (JavaInterpreter).

Note that we distinguish the attributes and the state of the model. The at-
tributes define the structure of the ball for an external observer and corresponds
semantically to the specification of its initial state. The state itself changes con-
tinuously, spontaneously or in response to incoming influences. In this case the
state is created and initialized from the parameters.

The figure 7.7 shows the code for handling incoming external influences.
The principle is to loop through the set of influences (put in the variable
externalInfluences), to check its type for each one and compute the state
change accordingly. Note that after the state change, a probe value is issued to
update all the possible visualization windows.

CHAPTER 7. SOME EXAMPLES 55

Figure 7.6: The rolling ball category with the initialize panel

The user is asked to further explore the model which is available as an
example, to see how the behaviors are defined in the various scripting languages.

7.2.1 Defining the concrete model

As said before, the definition of the structure and dynamics is part of the concep-
tual model and cannot be run directly. From the conceptual model, a concrete
and simulatable model can be instantiated. You have to open a concrete model
editor. At the top of the right panel, you have a list of conceptual models you
can take your definitions from. The figure 7.8 shows a window in which a model
has been built by creating an instance of each of the categories (an instance of
clock has been added to define the time rate at which the observer samples the
rolling ball). In this figure, each port is linked to the proper entity. The drawing
panel uses a modified UML object diagram. The links are named (which is not
the case in UML). As in UML, the name of the instances is optional and for
documentation purpose only.

The actual structure of an individual is not only composed by its links but
also by the values of its attributes (interpreted as the specification of the initial
state of the simulation). By editing an individual, the dialog of the figure 7.9
appears where you can change the name of the individual (optional), trace or
untrace the individual2, define or change the attribute values.

2while tracing in the scheduler traces the posted and sent influences, tracing an individual

traces the call to the M-DEVS functions.

CHAPTER 7. SOME EXAMPLES 56

Figure 7.7: The rolling ball category with the external transition panel

Figure 7.8: The concrete model as an instance of the conceptual model.

CHAPTER 7. SOME EXAMPLES 57

Figure 7.9: The edition dialog for an individual.

Figure 7.10: The view on the rolling ball state

Once all the model has been instantiated and all the parameters defined (a
further version should also check for the model completeness), the user can open
the scheduler, select the model to run, initialize and run it, either step by step
or in a single run until the end date is reached as described in more details in
the chapter 8.

In addition, a visualization window can be opened. For example, a pos-
sible view looks like the figure 7.10 and is updated each time the individuals
change3. The top left panel displays the clock value, the top right panel displays
“KICKED” for some time each time the kicker is issuing a kick, the bottom left
panel displays the rolling ball state (updated only when kicked) and the bottom
right panel displays the actual position of the ball at each time step.

Such a display cannot be created interactively yet. A number of visualiza-
tion items can be created, positioned within a control board and linked to the
individuals receiving its probes and using them to update the visualization. An
editor for such a control panel (including the possibility to change the parame-
ters shall be available in a near future.

7.3 The stupid model

Coming soon.

3Sorry if we did not program a panel to visualize trajectories yet.

Chapter 8

The scheduler

This chapter is really about running simulations. The concrete models one
wants to run are available from the drop down menu on the top of the scheduler
window (see 8.1). All the models defined in the concrete model editor are shown
in this drop down menu to select from. Additionally, files can be loaded within
the scheduler if saved in the scheduler format from the concrete model editor.
This possibility is offered to deliver turn key models to be run independently of
all the previously described editors.

A concrete model has to be selected from the list on the left. The initialize
button shall actually generate the simulation model out of the concrete model
description. The first step shall initialize the simulation model (the time shall
remain at 0). Further steps shall advance the time depending on the closest
scheduled next date.

In the scheduler menu, the first item opens an inspector to visualize the list
of all created entities (see 8.2). This list is updated during the simulation to
reflect the current list of entities. Clicking on an entity opens an entity inspector
to monitor what is going on in the given entity (see figure 8.3). The panel is
divided in four panes:

• the first pane lists the current parameters of the entity and their values;

• the second pane is the list of current ports with the list of entities their
are associated to;

• the third pane is used for managing the probe observers;

• finally the fourth pane displays the warning messages when necessary.

Figure 8.1: The scheduler window.

58

CHAPTER 8. THE SCHEDULER 59

Figure 8.2: The main inspector window.

The most important pane certainly is the third pane because it monitors
what is going on inside of the inspected entity. It is composed of a drop-down
menu for selecting a probe observer and a panel to display the probe observer
when it is displayable. By default, two probe observers are available:

• the probe view which displays the probes when received one after the
other. A button to clear the display is available if necessary;

• the probe output which send the probes to a file. When selecting the
probe observer, a file name as well as a separator string is asked. The
resulting file can be loaded in excel or any similar tool.

At each time step it is possible to open a window showing the structure of
the simulated model as a graph where each node is an entity and each edge is
a connection between the entities. The corresponding window is shown in the
figure 8.4 and is made of three parts:

• The upper part is a drop down menu to select the kind of graph manipu-
lation: either transforming for changing the place of the graph, zoom it in
or out, etc., or picking for selecting one node and move it on the screen;

• The graph itself;

• A button to switch between two algorithms to layout the graph. Choose
the one which seems more appropriate to visualize the model.

CHAPTER 8. THE SCHEDULER 60

Figure 8.3: The entity inspector window.

CHAPTER 8. THE SCHEDULER 61

Figure 8.4: The graph of the simulated model.

Appendix A

Introduction to Scheme

Scheme is a functional language close to Lisp but with a purer semantics.
Roughly speaking only two constructs are provided in scheme:

• the function (called procedure in the Scheme community) written: (lambda
<parameters> <body>) where parameters is a list of parameter names
and body is a sequence of expressions.

• the application written (<function> <arg1>. . .<argn>) where function

is a function as defined before and argi are expressions.

Of course, an expression is either a function or an application. This seems overly
simplistic but it has been shown that it is enough to express any computation
one could dream of. Nevertheless, the resulting syntax would become unreadable
for any reasonable computation. The simplest way to overcome this problem
is to provide the possibility to associate names to expressions with the form:
(define <name> <expressions>). A number of names have been predefined
in Scheme for all the current arithmetic operations as well as the operations on
very common data structures.

By the way, define is not a function name but the name of a syntactic
form which is transformed behind the scene in a proper application. The set
of possible syntactic forms can itself be extended, parameterizing the Scheme
interpreter with high level constructs at will (not explained in this introduction).

A structure or object is also called a literal expression is of the form: (quote
<something>) or (alternatively) ’<something>. The something is either:

• a number

• #t and #f

• a character #\..

• a string "..."

• a symbol

• a pair (<something1> . <somethingn>) or a list (<something1>. . .<somethingn>)

• a vector #(<something1>. . .<somethingn>)

62

APPENDIX A. INTRODUCTION TO SCHEME 63

The first four categories do not need the quote because they self-evaluate, i.e.
their value is themselves.

Finally, an additional power is acquired by the relationships between struc-
tures (or objects) and expressions. Of course, expressions transform structures
into structures (it is what functions or all about). The nice thing is that (eval
<exp>) transforms the structure produced by the expression into an expres-
sion...and computes its value as well. Therefore, one can write programs pro-
ducing programs which are further executed.

This appendix is not suppose to give a full course on Scheme but just pro-
vide a summary of the most common definitions for reference, including the
definitions introduced for use within Mimosa.

A.1 Control syntax

As in any language, there are some constructs for the usual control structures:
the sequence, the conditional and the loop.

(define <symbol> <exp>) the definition
(set! <symbol> <exp>) to change the definition
(begin <exp1>. . .<expn>) the sequence of expressions
(if <exp> <exptrue> <expfalse>) the conditional
(cond (<exp1> . . .). . .(else . . .)) the multiple contitional
(or <exp1>. . .<expn>) sequence until true
(and <exp1>. . .<expn>) sequence until false

The loop is more complicated with the form (do (<iter1>. . .<itern>) (<cond>

. . .) . . .) where iteri is a variable of iteration of the form (<vari> <expinit>

<expstep>) with a variable name, an initialization expression and a step com-
putation expression, the condition expression must be true for stopping the
iteration and the corresponding expressions are computed accordingly.

Finally, one must introduce the binding construct to create local variables
for various purposes:

(let ((<sym1> <exp1>) . . .) <expi>. . .) parallel binding
(let* ((<sym1> <exp1>) . . .) <expi>. . .) sequential binding
(letrec ((<sym1> <exp1>) . . .) <expi>. . .) complete binding

The main difference is that the association of values to symbols are avalaible
from the body alone in the first case, directly after the definition (and then for
the next definitions) in the second case and from the start in the third (allowing
self reference).

A.2 Booleans

There are two booleans #t and #f which are two symbols which evaluates to
themselves. Apart from and and or, we also have the following functions:

(boolean? <exp>) tests if boolean
(not <exp>) the negation
(eq? <exp1> <exp2>) strict equality
(eqv? <exp1> <exp2>) slight extension of strict equality
(equal? <exp1> <exp2>) recursive (or structural) equality

APPENDIX A. INTRODUCTION TO SCHEME 64

A.3 Numbers

Scheme recognizes the integers (e.g. 51236457), rationals (e.g. 6235645/23672573),
reals (e.g. 4.6565e-3) and complex numbers (e.g. 3+5i). The main distinction
is between exact and inexact representations of these. The predefined functions
are:

(number? <exp>) tests if number
(complex? <exp>) tests if complex
(real? <exp>) tests if real
(rational? <exp>) tests if rational
(integer? <exp>) tests if integer
(exact? <exp>) tests if exact
(inexact? <exp>) tests if inexact
(zero? <exp>) tests if zero
(positive? <exp>) tests if positive
(negative? <exp>) tests if negative
(odd? <exp>) tests if odd
(even? <exp>) tests if even
(= x1 . . .) equality
(< x1 . . .) monotonically increasing
(> x1 . . .) monotonically decreasing
(<= x1 . . .) monotonically non decreasing
(>= x1 . . .) monotonically non increasing
(abs x) the absolute value of the number
(min x1 . . .) the min of the numbers
(max x1 . . .) the max of the numbers
(+ z1 . . .) the sum of the numbers
(- z1 . . .) the difference of the numbers
(* z1 . . .) the product of the numbers
(/ z1 . . .) the quotient of the numbers
(quotient n1 n2) the quotient of the numbers
(remainder n1 n2) the remainder of the numbers
(modulo n1 n2) the modulo of the numbers
(gcd n1 . . .) the greatest common divisor of the numbers
(lcm n1 . . .) the lowest common multiple of the numbers
(numerator q) the numerator of the rational
(denominator q) the denominator of the rational
(floor x) the floor of the real
(ceiling x) the ceiling of the real
(truncate x) the truncate of the real
(round x) the round of the real
(real-part z) the real part of the complex
(imag-part z) the imaginary part of the complex

As well as most transcendant functions.

A.4 Dotted pairs and lists

The most common data structure in Scheme is the dotted pair written (<left>

. <right>). A list (<elt1> <elt2> . . . <eltn>) is nothing but (<elt1> .

APPENDIX A. INTRODUCTION TO SCHEME 65

(<elt2> (<eltn> . ()). . .) where () is the empty list. We have the
following functions:

(pair? <exp>) tests if dotted pair
(null? <exp>) tests if empty list
(list? <exp>) tests if empty list or dotted pair
(car <exp>) left of dotted pair or first element of list
(cdr <exp>) right of dotted pair or rest of list
(set-car! <pair> <obj>) modifies left of dotted pair
(set-cdr! <pair> <obj>) modifies right of dotted pair
(list <obj1> . . . <objn>) creates a list
(length <list>) length of a list
(reverse <list>) reverse of a list
(list-tail <list> <k>) the k-th rest of a list
(list-ref <list> <k>) the k-th element of a list
(append <list1> . . . <listn>) append of lists
(memq <object> <list>) member using eq?
(memv <object> <list>) member using eqv?
(member <object> <list>) member using equal?

An additional structure is the so-called a-list which is a list of pairs whose car is
considered as a key and the cdr as the associated value. The related functions
are:

(assq <object> <list>) has key using eq?
(assv <object> <list>) has key using eqv?
(assoc <object> <list>) has key using equal?

and returns the found pair if any, #f otherwise.

A.5 Mimosa primitives

For Mimosa, we added three very common control structures for better read-
ability:

(when <cond> <exp1>. . .<expn>) executes if #t
(unless <cond> <exp1>. . .<expn>) executes if #f
(for (<var> <list>) <exp1>. . .<expn>) a simple loop over a list
(times (<var> <nb>) <exp1>. . .<expn>) a simpler loop repeated nb times

Some functions are provided to access the Mimosa random generator:
(newRandom <seed>) creates a random generator
(nextBoolean <random>) generates a boolean randomly
(nextInt <random> <n>) generates an integer from 0 to n
(nextDouble <random>) generates a real from 0 to 1

Finally, the access to the DEVS entity functionalities are provided as follows:

• the variable self is linked to the current Java state;

• for each parameter, the variable with the same name is defined with the
associated value within the global context. It can additionally be accessed
through the function (getParameter <sym>);

• when a script for a DEVS function is called, the global variable time is
linked to the duration elapsed since the last internal or external transition;

APPENDIX A. INTRODUCTION TO SCHEME 66

• each influence is a Java object whose structure can be accessed by the
following functions:

(is <influence> <name>) #t if the influence has the given name
(contentOf <influence>) the list of arguments
(getAllInfluences) the list of incoming influences
(getInfluence <name>) the list of influences of the given name
(getInternalInfluence) the internal influence

• the various events can be posted with the following functions:

(port <sym> n1 . . . nn) creates a port
(sendExternal <port> <sym> <exp1>. . .<expn>) post an external event
(sendInternal n <sym> <exp1>. . .<expn>) post an internal event
(sendLogical <port> <sym> <exp1>. . .<expn>) post a logical event
(reply <influence> <sym> <exp1>. . .<expn>) reply to an influence
(sendProbe <sym> <exp1>. . .<expn>) post a probe

A port can be a string or a symbol when there is no indices.

Finally the structure changes can be made through the following functions:
(portRef <port1>. . .<portn>) creates a port reference
(pair <sym> <exp>) creates a pair for the parameters
(parameters <pair1>. . .<pairn>) creates parameters from the pairs
(addPort <portref> <category> <traced> <parameters>) creates a new entity
(linkPort <portref1> <portref2>) links referenced ports
(removePort <portref>) removes a references port

Bibliography

[1] http://bergel.eu/athena/.

[2] http://herzberg.ca.sandia.gov/jess/.

[3] http://jscheme.sourceforge.net/.

[4] http://www.alice.unibo.it:8080/tuprolog/.

[5] http://www.beanshell.org/.

[6] http://www.gnu.org/software/kawa/.

[7] http://www.jython.org/.

[8] Jacques Ferber and Jean-Pierre Müller. Influences and reaction: a model
of situated multiagent systems. In Mario Tokoro, editor, Proceedings of

2nd International Conference on Multi-Agent Systems, pages 72–79, Kyoto,
Japan, December 1996. AAAI.

[9] Jean-Pierre Müller. The mimosa generic modeling and simulatiion plat-
form: the case of multi-agent systems. In Herder Coelho and Bernard
Espinasse, editors, 5th Workshop on Agent-Based Simulation, pages 77–86,
Lisbon, Portugal, May 2004. SCS.

[10] Jean-Pierre Müller. Mimosa: using ontologies for modelling and simulation.
In Proceedings of Informatik 2007, Lecture Notes in Informatik, September
2007.

[11] Jean-Pierre Müller and Pierre Bommel. An introduction to UML for mod-

eling in the human and social sciences, volume Agent-based Modelling and
Simulation in the Social and Human Sciences, chapter 12. Bardwell Press,
2007.

[12] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Mod-

eling and Simulation. Academic Press, 2000.

67

